

Google App Engine Java security sandbox

bypasses

Technical Report

Ver. 1.0.0

SE-2014-02 Project

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

INTRODUCTION ... 6

1 GOOGLE APP ENGINE FOR JAVA - SECURITY ARCHITECTURE ... 8

1.1 BASE CONCEPTS .. 8

1.1.1 File System access ... 8

1.1.2 Network access ... 8

1.1.3 Threads .. 9

1.1.4 java.lang.System class ... 9

1.1.5 Class loaders .. 9

1.1.6 Reflection API .. 10

1.1.7 JRE Class White List ... 10

1.2 JAVA SANDBOX IMPLEMENTATION .. 10

1.2.1 Communication channels .. 11

1.2.2 Virtual File System ... 11

1.2.3 Socket proxy .. 12

1.2.4 Class Sweeper ... 12

1.2.4.1 Class Loader PreVerifier .. 13

1.2.4.2 Finalizer Visitor .. 15

1.2.4.3 API Interjection and Interception ... 15

1.2.5 Class stubs ... 19

1.2.6 Class Loader architecture .. 19

2 VULNERABILITIES .. 21

2.1 METHODOLOGY USED... 21

2.2 DETAILS ... 21

2.2.1 Issues 1, 2, 4 and 6 .. 21

2.2.2 Issue 3 ... 23

2.2.3 Issue 5 ... 24

2.2.4 Issue 7 ... 25

2.2.5 Issues 8 and 10 .. 25

2.2.6 Issues 9, 11, 15 and 16 .. 26

2.2.7 Issue 12 and 14 ... 27

2.2.8 Issue 13 ... 29

2.2.9 Issues 17 an 18 .. 29

2.2.10 Issue 19 ... 30

2.2.11 Issue 20 ... 30

2.2.12 Issue 21 ... 31

2.2.13 Issues 22, 23, 25, 26 and 27 .. 31

2.2.14 Issue 24 ... 32

2.2.15 Issues 28 and 29 .. 33

2.2.16 Issue 30 ... 35

2.2.17 Issue 31 ... 35

2.3 AFFECTED COMPONENTS ... 35

2.4 VENDOR'S EVALUATION .. 36

2.4.1 WAI issues ... 37

2.4.1.1 Additional arguments.. 37

2.4.1.2 Closing thoughts .. 40

3 EXPLOITATION TECHNIQUES ... 41

3.1 SPECIFIC EXPLOITATION VECTORS .. 41

3.1.1 Generic privilege elevation scenarios ... 41

3.1.2 URLClassLoader instance .. 42

3.1.2.1 sun.swing.AccessibleMethod (Oct 2012 exploit vector) ... 43

3.1.2.2 sun.swing.SwingLazyValue (Oct 2014 exploit vector) ... 44

3.1.3 invoke() in a privileged CL namespace .. 45

3.1.3.1 Abuse of an outer class implementation (Issue 5) .. 46

3.1.3.2 MethodHandleProxies implementing PriviledgedAction interface (Issues 23-27) ... 47

3.2 EXPLOIT CHAINS .. 51

3.3 NATIVE CODE EXECUTION ... 52

3.3.1 Breaking type safety .. 52

3.3.2 Breaking memory safety ... 52

3.3.3 Gaining code execution ... 53

3.3.3.1 methodOop's adapter handle ... 53

3.3.3.2 NativeSignalHandler .. 54

3.3.3.3 Generic code_handle .. 54

3.3.3.4 Native code execution setup .. 55

3.3.4 Native API .. 56

3.3.4.1 Arbitrary memory access .. 57

3.3.4.2 Native code execution .. 57

3.3.4.3 Symbol address lookup ... 57

3.3.4.4 Malloc and free primitives .. 57

3.3.4.5 Sample uses... 58

4 VULNERABILITIES IMPACT ... 59

5 SUMMARY ... 60

REFERENCES .. 61

APPENDIX A ... 63

APPENDIX B ... 66

INTRODUCTION

In Sep 2012, when our Java SE security research [1] was deemed to be complete1, we

started to wonder whether any of the issues spotted in JVM implementations coming from

Oracle and IBM could affect the code of other major software vendors. We also wanted to

verify whether security and privacy of users' data and applications is properly implemented

in the environment of an arbitrary cloud service based on a Java VM runtime. This is how we

ended up investigating security of Google App Engine for Java (GAE) [2], a platform as a

service (PaaS) cloud computing platform from Google that allow for arbitrary Java

applications development and hosting in the company's managed data centers. This is also

how SE-2014-02 project was born.

Our work on the project was started in Oct 2012. This was also the time when our initial

complete GAE Java security sandbox escape was achieved2. Due to the fact that we

conducted 3 other non-commercial research projects in the meantime3, our GAE work

needed to be postponed several times. We finally came back to the project in Oct 2014.

On Dec 6, 2014, as a result of our a little bit more aggressive poking4 around the OS

sandbox underlying the GAE JVM layer, Google suspended our test account. Instead of

playing a catch and mouse game5 with Google, we decided to inform the public about the

existence of our GAE project and reveal some brief information about the results obtained so

far [3]. Taking into account an educational nature of the security issues found in GAE Java

security sandbox and what seemed to be an appreciation Google had for all sorts of sandbox

escapes [4], we expressed our hope the company would make it possible for us to complete

the project and reenable our suspended account.

On Dec 7, 2014 as a response to Google's interest to "get whatever information Security

Explorations had on the vulnerabilities" and regardless of implying that "a couple of more

days to work on the project were needed in order to bring it up to the usual quality when

reporting issues to vendors", information regarding vulnerabilities and associated Proof of

Concept (POC) codes were sent to the company.

Google has been able to reproduce reported issues locally6, but when tried in production

some of them didn't seem to work. On Dec 11, 2014, Google said that it would be OK for

the company that we continue the research as long as it is done within the Java VM and not

moved on to the next sandboxing layer (OS sandbox). We agreed to Google proposal and

1
 Issue 50 was supposed to mark an end to our Java SE security research project.

2
 In our Devoxx 2012 presentation (slide 56), the big SW vendor mentioned is Google.

3
 Java SE (SE-2012-01), Oracle Java Cloud service (SE-2013-01) and Oracle Database Java VM (SE-2014-01)

security research projects.
4
 We issued various system calls / intentionally triggered certain program faults in order to learn more about

the nature of the error codes associated with a process death.
5
 We could setup another account from a different IP address, modify the POC codes, withhold from

interfering with the OS sandbox, etc.
6
 Many of our POC's were developed in a local GAE environment, which aimed to emulate Google production

environment. Unfortunately, our custom local GAE environment didn't properly mirror the Google App Engine
class loading behavior (many classes marked as vulnerable were not immediately available to user code in
production GAE). More on that in paragraph 1.2.4.3.

informed the company that our research will be continued with a scope limited to GAE Java

VM layer.

Over the following four days we were able to confirm 21 initial issues in a GAE production

environment. By the mid of Jan 2015, additional 10 issues were confirmed and reported to

Google.

This paper presents the results of our research into the security of a Java security sandbox

of Google App Engine. While it omits technical details pertaining to the OS sandbox layer7,

we believe that the published material still constitutes a valuable source of information for

all parties interested in a security of Java and Java cloud based solutions such as PaaS.

The goal of this paper is to educate users, developers and possibly vendors about security

risks associated with certain design and architecture choices for cloud environments based

on JRE. The other goal is to show the very tricky nature of Java security and especially the

pitfalls one can easily get into if custom Java Runtime modifications are applied to certain

security sensitive Java APIs and components.

In the first part of this paper, quick introduction to Google App Engine for Java security

architecture is made. It is followed by a brief description of key components comprising GAE

sandbox implementation. Java API interception, Class Loaders architecture and JRE Class

Whitelisting are explained as part of it.

The second part of the paper presents vulnerabilities found during SE-2014-02 project. We

show how single and quite innocent looking GAE Java security breaches can lead to serious,

full-blown compromises of GAE / JRE security sandbox. Technical details and exploitation

techniques for the vulnerabilities found during SE-2014-02 research project are also

presented.

The paper wraps up with a brief information regarding vulnerabilities impact followed by a

few summary words regarding Google's approach to securing Java Runtime in a cloud based

environment.

Throughout this paper, whenever a reference to a GAE environment is made, GAE for Java

is implied. Similarly, the term "GAE [security] sandbox" implies the GAE Java VM security

sandbox, not the OS sandbox.

7
 Per agreement with Google.

1 GOOGLE APP ENGINE FOR JAVA - SECURITY ARCHITECTURE

Google App Engine for Java makes it possible to host and run user web applications on a

Google managed server infrastructure. For security reasons, these applications are executed

in a sandboxed environment. The sandbox itself is comprised of two layers. The first layer is

a GAE Java sandbox, which is built on top of the underlying Java SE software. The second

layer is a native OS sandbox, which limits the exposure of the operating system to user

applications and a GAE environment itself.

That approach seemed to be quite natural. Back in 2012, Java didn't constitute a strong

security posture due to multiple security vulnerabilities being discovered in it and several

incidents involving 0-day attack codes spotted in the wild [5][6]. User code execution on a

bare JRE stack was not even possible in Oracle's own Java Cloud service environment8. The

less surprising it was that Google decided to implement an additional security layer on top of

Java SE.

1.1 BASE CONCEPTS

The presence of standard Java SE security sandbox along with a GAE sandboxed layer

enforced several restrictions to user applications executed in GAE environment [7]. Below, a

brief characteristic is provided with respect to the key concepts that shaped the security of a

GAE environment.

1.1.1 File System access

By default, user applications cannot access the file system of the underlying native OS. User

code has only read access to its unique application deployment directory and all of its

subdirectories. This means, that both user classes, resources and JSP files that make up a

target application container (WAR file) can be freely read. The actual access can be

implemented by the means of Class Loader's functionality (class or resource loading) or with

the use of standard Java APIs (File / FileInputStream based classes).

User applications cannot write any data to the file system. They need to use the App Engine

Datastore API for any persistent data storage.

1.1.2 Network access

GAE applications can access network resources with the use of network sockets (Java

sockets API), but there are some restrictions enforced on the way they can be used. This in

particular includes the following:

 sockets are available to paid apps only (as of Oct 2014)9,

 only outbound, client (non-listening) TCP or UDP sockets can be created,

 sockets cannot be bound to a specific address or port,

8
 Applications deployed by users in a target WebLogic server instance of Oracle Java Cloud Service were

subject to the verification (and translation) aimed to disallow access to forbidden (potentially insecure) classes
and / or functionality.
9
 Our tests conducted prior to that time indicate that sockets were available to all apps.

 private Google IP ranges are blocked with the exception of a few predefined hosts

(DNS, SMTP, POP3S and IMAPS servers).

User applications can also make use of java.net.URL to open arbitrary HTTP and HTTPS

connections. However, the implementation of protocol handlers for these protocols relies on

the URL Fetch API [8], not network sockets.

1.1.3 Threads

User applications are web applications and as such they handle web requests through

Servlet API or JSP files. User code is usually spawned for the time of an associated HTTP

request. GAE makes sure that all threads associated with a given HTTP request are

terminated upon finishing of a request processing. This includes both successful and

erroneous requests. GAE code tries to detect deadlocked threads as well. There are also

both soft and hard time limits implemented of which goal is to terminate the execution of

any user thread that does not end the processing within the predefined time limits.

The idea behind all of the above is twofold. GAE makes sure that no user threads outlive the

HTTP requests that triggered their creation. But, this even goes further as GAE makes sure

that no user code gets executed after HTTP request has been handled. This includes all

sorts of system Java handlers and finalizers in particular.

While support for the so called background threads and cron tasks is available in GAE, they

are not implemented as classic background Java threads (threads created with the use of

new Thread() call, detached from the application thread group and marked as

background in JRE).

1.1.4 java.lang.System class

Most of java.lang.System API is not available to user applications. The exit() and

Garbage Collector related methods such as gc(), runFinalization() and

runFinalizersOnExit() do nothing in App Engine. As a result, user code cannot

implicitly trigger the GC operation.

Methods that implement arbitrary library loading such as load() or loadLibrary()

always raise a SecurityException. The same applies to the setSecurityManager()

method.

1.1.5 Class loaders

GAE makes it possible for user code to create arbitrary Class Loaders. As a result, user

applications can successfully define and create instances of subclasses of

java.lang.ClassLoader class that implement a custom class loading logic. The

permissions of the classes defined by such Class Loader objects are enforced to be always

reflecting the allowed set of permissions for user applications (permissions of an

unprivileged web application). The latter enforcement is in particular important as Class

Loaders can provide the JVM with classes definitions as well as their privileges (Protection

Domains and permissions).

1.1.6 Reflection API

GAE allows for full and unrestricted Reflection API access to application's own classes

(classes defined by an application Class Loader or a custom, user defined Class Loader).

User applications can reflect on private members of classes. They can also call

setAccessible() method on them. This makes it possible to override standard Java

protection mechanisms and access private class members (call private methods, read and

set private fields).

An application is also allowed to reflect on JRE and API classes, but it can only access public

members of these classes.

An application cannot reflect against any other classes not belonging to itself. It cannot use

the setAccessible() method to circumvent these restrictions.

1.1.7 JRE Class White List

In order to minimize the risks posed by a security vulnerability present in JRE, GAE employs

the idea of JRE Class White List. Its goal is to limit the set of JRE classes that can be

accessed by user code. Arbitrary class loading or linking is successful only if a requested

class is allowed in the environment (it is present on a list of deemed to be safe JRE classes -

the JRE Class White List).

As of Oct 2014, the JRE Class White List contained 1650+ classes and the JRE was based on

Java SE 7 class base.

1.2 JAVA SANDBOX IMPLEMENTATION

GAE environment contains support for all of the abovementioned concepts in order to

implement a security sandbox for user applications.

GAE Java Runtime sandbox is implemented at both native and Java class level. It's building

blocks are illustrated on Fig. 1. Below, a more detailed information is provided with respect

to this sandbox implementation.

Fig. 1 The building blocks of a GAE Java Runtime sandbox.

1.2.1 Communication channels

GAE Java Runtime relies on two communication channels for both servicing and handling

specific RPC request. Both channels are setup as part of the sandbox startup process.

The native Java Runtime layer relies on C1 channel. The non-native layer makes use of C2

channel.

1.2.2 Virtual File System

GAE runtime implements a Virtual File System for arbitrary file access. For that purpose,

GAE native layer intercepts all C library (libc.so.1) calls related to file / path, directory

and file descriptor operations. This is accomplished with the use of a simple proxy

mechanism (LibcProxy and FDProxy components). Actual libc call interception is

implemented at the OS dynamic linker layer - the main libajavaruntime.so library

simply redefines specific libc.so.1 symbols:

01e30bb0 T open

01e30cd0 T open64

01e30df0 T access

01e30ef0 T read

01e31000 T write

GAE implementation for proxied library calls dispatches them over C1 communication

channel to proper RPC services.

User application directory containing the unpacked WAR files becomes visible to GAE

runtime upon mounting it at a predefined file system location (denoted by

/base/data/home/apps/app_name/app_version/ where app_name / app_version

are application specific attributes). This mounting operation is conducted during the

environment setup (new application deployment) and prior to servicing any user HTTP

requests.

1.2.3 Socket proxy

GAE Java layer diverts all network related operations through RPC services. GAE installs a

custom SocketImplFactory object for java.net.Socket and

java.net.ServerSocket. A custom instance of DatagramSocketImplFactory is

also installed for java.net.DatagramSocket. As a result, all socket related operations

are proxied through a dedicated RPC service.

GAE also installs a custom URL handler for HTTP and HTTP protocols. This is an instance of

com.google.apphosting.utils.security.urlfetch.URLFetchServiceStreamH

andler class. Its implementation diverts java.net.URL handling for HTTP and HTTPS

protocols through GAE URLFetch service.

1.2.4 Class Sweeper

In GAE, all classes loaded by user applications are subject to the mandatory verification step

(sweeping) performed prior to defining a given class in the JVM. The sweeping is conducted

by a code of a UserClassLoader class and its findClass method in particular. It is done

prior to the invocation of a native defineClass method of java.lang.ClassLoader

class. This invocation chain is illustrated on Fig. 2.

Fig. 2 The integration of a Class Sweeper into a class loading process.

Class sweeping forms a base security mechanism of the GAE Java sandbox. Implementation

of several key GAE security concepts rely on it (i.e. Class Loaders, Reflection API, JRE Class

White List).

During the sweeping process, the content of a Class file is inspected in order to both

validate or enforce certain security restrictions defined by the GAE environment. The

inspection process itself relies on a static analysis of Class files (its Constant Pool entries and

Code attributes in particular).

The functionality of GAE Class sweeping is implemented by

com.google.apphosting.runtime.security.preverifier.PreVerifier class.

Its sweep() method has two arguments denoting arbitrary Java streams from where input

Class data is read from and output Class bytes (the result of the sweeping) are written to:

 public String sweep(InputStream input, OutputStream output)

Class sweeping can raise an exception if a given Class file does not meet certain security

requirements of the GAE sandbox (i.e. invalid subclassing). If completed, the input Class

bytes are either copied to the output stream without any modification or they are

transformed according to the specific rules.

Class sweeping is implemented with the use of ASM [9], a Java bytecode manipulation and

analysis framework. It is conducted with the help of several independent ASM modules

described in a more detail below.

1.2.4.1 Class Loader PreVerifier

The possibility to create arbitrary Class Loaders requires some modifications to their

functionality in order to prevent against the malicious and privileged Class definitions in the

JVM.

All Class Loader objects need to inherit from java.lang.ClassLoader class. As

subclasses of the base system Class Loader class, user defined Class Loaders could directly

invoke one of its protected defineClass methods that include a ProtectionDomain

argument. For that reason, Class Loader classes are transformed in such a way, so that they

extend a safe Class Loader class instead of the original superclass. A given safe Class Loader

class either implements or transfers execution of certain security sensitive Class Loader

methods such as defineClass to proper wrapper methods.

Table 1 presents JRE Class Loader classes and their corresponding safe GAE Class Loaders.

JRE Class Loader Corresponding safe GAE Class Loader
java.lang.ClassLoader com.google.apphosting.runtime.security.shared.CustomClas

sLoader

java.net.URLClassLoader com.google.apphosting.runtime.security.shared.CustomURLC

lassLoader

java.security.SecureClassL

oader
NOT SUPPORTED

Table 1 JRE Class Loader classes and their corresponding safe GAE Class Loaders.

Beside superclass replacement, Class Loader PreVerifier also inspects all instance method

invocation instructions (invokespecial and invokevirtual) present in the code of user defined

Class Loaders. Upon encountering the invocation of a defineClass method, its

corresponding Java bytecode sequence is replaced in such a way, so that

safeDefineClass method of a new superclass gets invoked. This mechanism is illustrated

on Fig. 3.

Fig. 3 Class Sweeper operation for custom, user defined Class Loaders.

The goal of safeDefineClass is to provide a safe replacement for defineClass

method. Its implementation invokes Class Sweeper for all user defined classes. It also

enforces a safe ProtectionDomain on them (user provided ProtectionDomain

argument is ignored). Sample implementation of a safe replacement for a defineClass

method used by UserClassLoader is illustrated on Fig. 4.

Fig. 4 The implementation of a safe replacement for a defineClass method used by UserClassLoader.

The defineClass method is not the only one that gets diverted to the new supeclass

implementation. Class Loader PreVerifier contains a list of guarded methods that are always

dispatched from a given safe Class Loader superclass. The following methods were part of

this list (among others):

 PermissionCollection getPermissions(CodeSource codesource)

 Package definePackage(String s, String s1, String s2, String s3,

String s4, String s5, String s6, URL url)

 Package getPackage(String s)

 Package[] getPackages()

 String findLibrary(String s)

Class Loader PreVerfier also inspects ldc instructions in order to detect arbitrary loading of a

method handles corresponding to either Class Loader's defineClass or one of its guarded

methods. In Java 7, ldc instruction can push a reference to

java.lang.invoke.MethodHandle object specified in a Constant Pool entry of a Class

File [10] (the CONSTANT_MethodHandle_info structure). Class Loader Preverifier

inspects REF_invokeVirtual, REF_invokeStatic and REF_invokeSpecial method

handle kinds. Upon encountering a reference to a security sensitive method handle, its

Constant Pool entry is replaced by a method handle corresponding to the safe superclass

method. As a result, during runtime, ldc instruction will always push a safe replacement for

a given Class Loader method (i.e. safeDefineClass instead of defineClass).

1.2.4.2 Finalizer Visitor

Class Sweeper transforms the code of all user defined finalizers (finalize() methods) in

such a way, so that they do nothing if invoked from within a finalizer handling system

thread. The finalizer handling thread is detected by checking the name of the current

thread. If it denotes "Finalizer" or "Secondary finalizer", the code is assumed to be executing

in the context of a system finalizer thread.

1.2.4.3 API Interjection and Interception

GAE implements a mechanism that allows for arbitrary modification or complete interception

of JRE classes. API interjection mechanism makes it possible to invoke a given method prior

to the invocation of another method. API interception allows to invoke a given method in

place of another method.

API Interjection and Interception requires proper definition for interjected and intercepted

classes and their methods (mirrors). In GAE, such definitions are maintained respectively

under interject and intercept nodes of

com.google.apphosting.runtime.security.shared package. In order to intercept

or interject a method of a given class, one needs to define a class implementing this method

in a com.google.apphosting.runtime.security.shared.intercept package.

The package of the class needs to be changed to reflect that it is part of either the base

interject and intercept package. The name of the class needs to have _ character

added to it. Finally, instance methods need to be changed to static ones and they also need

to have one extra argument added to the beginning of an arguments list. This is the original

object for which the interjection / interception occurs (this).

The above rules are illustrated on Fig. 5. In order to intercept getClassLoader() method

of java.lang.Class class, its mirror (Class_ class) needs to be defined in a

com.google.apphosting.runtime.security.shared.intercept.java.lang

package. It also needs to implement public static ClassLoader

getClassLoader(Class klass) method.

Fig. 5 Illustration of a JRE API Interception (getClassLoader() method of java.lang.Class class).

Interception API can be applied to methods, fields and constructors. Interjection API is

supported for methods only.

GAE Class Sweeper applies proper transformation to the code of inspected classes in order

to implement API interjection and interception functionality. If a given class referenced in

user code has a mirror, every reference to it is replaced with a reference to that mirror.

Similarly, instance invocations of methods (fields) from classes that have corresponding

implementation (definition) in a mirror class are replaced with static invocations (access

operation) of the mirrored method (field).

Reflection API and method handles are taken into account by the API Interception and

Interjection mechanism. Thus, some base Reflection API classes (java.lang.Class,

java.lang.reflect.*, java.lang.reflect.invoke.*) are subject to the

interception themselves.

As of Oct 2014, GAE implemented API interception with respect to 160 JRE classes. API

Interjection was conducted for 4 classes only. Table 2 presents information about selected

classes and methods that were subject to the Interception API in GAE.

JRE Class Method Summary of a mirror class

implementation
java.lang.Class getClassLoader For user classes, a reference to

a defining Class Loader is

returned. A NULL value is

returned if a class comes from

a PrivilegedClassLoader

or a RuntimeClassLoader

namespaces. In the latter case,
the class needs to originate

from a runtime-

shared.jar location. In any

other case, an
AccessControlException

is thrown.

 forName Class.forName() is invoked

in a doPrivileged method

block with a loader argument
corresponding to the Class

Loader of a caller class.
 getProtectionDomain A Protection Domain argument

is returned for a given class.
 getMethod

getMethods

getDeclaredMethod

getDeclaredMethod

For certain security sensitive
java.lang.ClassLoader

methods (i.e. defineClass,

resolveClass), a

corresponding safe method

from a SafeClassDefiner

class is returned. Otherwise, a

corresponding JRE method is

invoked in a doPrivileged

method block.
 getField

getFields

getDeclaredField

getDeclaredFields

getConstructor

getConstructors

getDeclaredConstructor

getDeclaredConstructors

A corresponding JRE method is

invoked in a doPrivileged

method block

java.lang.reflect.Meth

od

Invoke Any safe method gets invoked

directly. Otherwise, a check is
conducted whether a method

is accessible10. If not, an
exception gets thrown. If it is

accessible and a corresponding
method in a mirror class exits,

a mirror method is invoked.

Otherwise, the original method
is invoked directly.

10

 an accessible Class member is either public, loaded or accessible by a user Class Loader.

java.lang.reflect.Fiel

d

get A check is conducted whether

a field is accessible. If not, an

exception gets thrown. If it is
accessible and a corresponding

field in a mirror class exits, a
value from a mirror field is

read and returned. Otherwise,
the value read from the

original field is returned

directly.
 set A check is conducted whether

a field is writable11. If not, an

exception gets thrown. If it is
writable, the original field is set

with a given value.
java.lang.Runtime exit

exec

load

loadLibrary

addShutdownHook

A SecurityException is

thrown.

java.lang.System gc

runFinalization

runFinalizersOnExit

Methods have an empty body

(they do nothing).

 setSecurityManager A SecurityException is

thrown.
Table 2 Selected mirror classes and their methods.

It should be also noted that this was the API Interjection and Interception mechanism that

lied at the core of a failure to reproduce the POCs illustrating the issues initially reported to

Google12. We followed the same methodology for their development as in the case of SE-

2013-01 project. This methodology assumed a minimum amount of work to be conducted

during POCs development / testing in a target production cloud. Final tests were always

scheduled to be conducted a few days prior to the actual reporting of the issues to the

vendor13. As a result, most of our POCs were developed in a custom local GAE environment

that was supposed to mimic Google's production environment as close as possible. In order

to fulfill that requirement, we needed to know which classes were visible to the user code

and what Class Loader namespaces they belonged to. This is why we invoked

Class.forName() method on selected classes as well as Class.getClassLoader()

call. We used the results obtained to setup the classpath of our local GAE environment.

Unfortunately, we got fooled by GAE API Interception mechanism, which mislead us into

thinking that:

 all classes are defined in a system (bootstrap) Class Loader namespace,

 all classes from a RuntimeClassLoader namespace are visible to user code.

The above conclusions were wrong. Intercepted Class.getClassLoader() call always

returned NULL, instead of a real system GAE Class Loader reference. And by testing the

visibility of random classes from a single JAR file of RuntimeClassLoader namespace,

11

 a writable Field cannot be final and it needs to be an accessible Class member.
12

 Issues 1-22 / unconfirmed Issues 23-35 reported to the company on 07-Dec-2014.
13

 this also applies to any purchase of a software license / service subscription.

certain peculiarities of RuntimeClassLoader implementation were missed (classes from a

tested runtime-shared.jar location were allowed to load, but nothing else).

As a result, all POCs developed and tested in a local GAE environment worked fine locally,

but many of them failed in a production environment14.

1.2.5 Class stubs

For certain security sensitive classes, GAE provides dummy stub replacements. These are

the classes that are defined under

com.google.apphosting.runtime.security.shared.stub package node.

GAE stub classes contain dummy methods and initializers that don't do much beyond

throwing an exception upon their invocation. A part of a stub class implementation

corresponding to the java.beans.Statement class is provided below:

package com.google.apphosting.runtime.security.shared.stub.java.beans;

public class Statement {

 public Statement(Object obj, String s, Object aobj[]) {

 throw new NoClassDefFoundError("java.beans.Statement is a restricted class.

 Please see the Google App Engine developer's guide for more

 details.");

 }

 public Object getTarget() {

 throw new NoClassDefFoundError("java.beans.Statement is a restricted class.

 Please see the Google App Engine developer's guide for more

 details.");

 }

 ...

}

Regardless of the JRE security policy settings (packages.access=sun.*, ...), there are

also stub classes defined for classes that have their origin in restricted packages such as

sun.misc.Unsafe. Upon an attempt to load such a class, UserClassLoader will return

a stub corresponding to the requested class instead of throwing a SecurityExcception.

1.2.6 Class Loader architecture

GAE Java runtime creates several Class Loader namespaces, which provide natural isolation

between user, runtime and system code.

User application code loading is always handled by an instance of

com.google.apphosting.runtime.security.UserClassLoader class. This Class

Loader is also set as current Thread's context Class Loader. UserClassLoader

namespace is always a subject to Class Sweeping. This forms a security boundary for GAE

sandbox layer at a Class Loader level.

14

 27 unexploitable issues with barely 7 candidates to work. We later proved that some of those
"unexploitable" issues were still valid though (Issues 2, 5, 7, 12, 22, 23, 25, 26 and 27 in particular).

UserClassLoader also relies on two additional Class Loader's for class loading. An

instance of com.google.apphosting.runtime.security.RuntimeClassLoader

class is used to load GAE Java Runtime implementation classes. There is also an instance of

PrivilegedClassLoader class, which is an internal class to UserClassLoader one. It

handles classes implementing the API Interjection and Interception layer for Class Sweeper

(all intercepted / interjected classes definitions). The actual implementation of the Class

Sweeper engine and all Class Loaders described above is defined in JRE's

sun.misc.Launcher$AppClassLoader namespace.

Class loading methods of both UserClassLoader and RuntimeClassLoader implement

proper class filtering and checks that deny access to prohibited classes. By default, classes

that are not part of the JRE or are on the Class Whitelist can be requested by user

applications. User defined classes or classes defined by a user Class Loader are allowed to

load.

Apart from that, the RuntimeClassLoader implements additional filtering that hides

almost all of its classes' namespace from the UserClassLoader. The only exception are

the classes that match the shared URLs codebase (runtime-shared.jar).

All GAE Class Loaders extend from java.net.URLClassLoader class. They have different

privileges and codebases as illustrated on Fig. 6.

Fig. 6 GAE Class Loaders, their namespaces and privileges.

Finally, there is a bootstrap system Class Loader that primarily constitutes a namespace for

JRE runtime classes and some GAE bootstrap classes as well. Classes defined in this

namespace are fully privileged by default.

2 VULNERABILITIES

SE-2014-02 project resulted in a discovery of 31 security vulnerabilities in a Java security

sandbox of Google App Engine service. Each of them is described in a detail in this part of

the paper. Brief summary of all identified weaknesses can be found in APPENDIX A at the end

of this report.

2.1 METHODOLOGY USED

As described in 1.1.5, GAE allows user code to create arbitrary Class Loader objects. GAE

environment allows for a more privileged Reflection API access to JRE and application's

classes as well (1.1.6). By default Java security sandbox neither grants Class Loader creation

permission, nor the Reflection API access corresponding to the GAE model. This is due to

the security risks they could pose to the sandbox.

Class Loader objects are quite powerful. They provide class definitions to the VM. They can

specify permissions for loaded classes. Finally, they can also load native libraries into Java

VM. These are just a few of the many reasons behind the requirement for the possession of

a proper security privilege designating Class Loader creation in JRE. Class Loaders also

provide the means to dynamically resolve unknown classes. With respect to this, their role in

Java VM is similar to dynamic linkers’ role in Unix.

Reflection API implementation allows for the violation of key Java security constraints such

as data access protection and type safety. Insecure use of its functions conducted from

within a privileged code can easily lead to the compromise of a Java security sandbox.

Vulnerable implementation of both Class Loaders and Reflection API has lead to many

security vulnerabilities in the past [11][1].

Taking into account all of the above, both Class Loaders and Reflection API have been

selected as the main focus of our research into GAE security (potential weak points).

2.2 DETAILS

2.2.1 Issues 1, 2, 4 and 6

Class Sweeper tries to limit the security risk associated with a possibility to create arbitrary

Class Loaders in a GAE environment. It does not however take into account the possibility to

create an instance of a system class loader object with the use of Java Reflection API (core

API and Java SE 7 based one15).

15

 the API implemented by the classes from java.lang.invoke.* package, referenced as a new
Reflection API throughout this paper.

As a result, a straightforward combination of getConstructor() and newInstance()

calls could be used to instantiate a java.net.URLClassLoader class (Issue 1). This is

illustrated on Fig. 7.

Fig. 7 An illustration of Issue 1

Similarly, a simple combination of findConstructor() and invoke() method calls of

new Reflection API could be used to achieve exactly the same (Issue 6) as shown on Fig. 8.

Fig. 8 An illustration of Issue 6

Additionally, GAE does not take into account the possibility to create an instance of a system

class loader object with the use of a Reflection API invocation embedded in JRE code. This

lies at the core of both Issues 2 and 4. Issue 2 exploits the implementation of a whitelisted

java.security.Provider.Service class for a system Class Loader instantiation (Fig.

9).

Fig. 9 An illustration of Issue 2.

Issue 4 allows to create an instance of a system class loader object with the use of a

java.beans.XMLDecoder class. A specially crafted XML file provided as an input to

java.beans.XMLDecoder object instance can result in an execution of arbitrary Java

methods and constructors outside of a GAE control.

Issue 2 demonstrates an attack technique against an arbitrary Java class whitelisting

mechanism as a vulnerability that was used to bypass Java API whitelisting rules of Oracle

Java Cloud Software16 [12]. Issue 4 is exactly the same vulnerability as the one used in

Oracle Java Cloud environment17. Its more detailed description can be found in our Java SE

security research report from 2012 [13].

It's worth to note that URLClassLoader objects instantiated with the use of either Issue 1,

2, 4 or 6 are fully functional. Arbitrary user provided code (classes) could be loaded and

executed through them. The most important thing is however related to the fact that

URLClassLoader namespace is not a subject to any code transformation (sweeping).

Thus, a sole instance of an URLClassLoader object under attacker's control constitutes a

successful escape of a GAE Java security sandbox18 imposed by the Class Sweeper and

associated API Interjection and Interception mechanism in particular (escape of

UserClassLoader namespace).

2.2.2 Issue 3

A replacement of a forName method of java.lang.Class class implemented by the GAE

API Interception mechanism contains an insecure invocation of an actual

Class.forName() Reflection API call. This is illustrated on Fig. 10.

16

 Static checks imposed by a Java API whitelisting rules of Oracle Java Cloud Service could be also bypassed
through a Reflection API trampoline in a system code (Issue 18).
17

 Issue 30 of SE-2013-01 project (Java API whitelisting rules bypass through XMLDecoder).
18

 This should not be confused with a JRE sandbox as it till needs to be escaped (i.e. Security Manager needs to
be turned off).

Fig. 10 An illustration of Issue 3.

A static, no-argument forName() method of

com.google.apphosting.runtime.security.shared.intercept.java.lang.Cl

ass_ class contains a Class.forName() method invocation done from within a

doPrivileged method block. Its 3rd argument denotes a Class Loader of a caller's class

obtained with the use of a RuntimeVerifier.getApplicationCallerClass() call. It

can be easily enforced to denote a system (NULL) CL namespace with the use of a new

Reflection API and invokeWithArguments method in particular. As a result, arbitrary

access to restricted classes could be gained as the privileges of the Class_ class allow for

access to classes from a sun.* package (PrivilegedClassLoader namespace).

It's worth to note that Issue 3 demonstrated exactly the same attack against security

sensitive Reflection API calls as Issue 32 of SE-2012-01 project. Oracle's fix for Issue 32

relies on a binding of the MethodHandle object to the caller of a target method / constructor

if it denotes a potentially dangerous Reflection API call. This binding has a form of injecting

extra stack frame from a caller's Class Loader namespace into the call stack prior to issuing

a security sensitive method call [14]. GAE interception API broke Oracle's fix. Although, a

security of the intercepted Class.forName() call still relied on a caller class, no

MethodHandle binding was performed. As a result, a security vulnerability was introduced.

2.2.3 Issue 5

Similarly to Issue 3, the implementation of an invoke method of

com.google.apphosting.runtime.security.shared.intercept.java.lang.re

flect.Method_ class contains an insecure invocation of Method.invoke() Reflection

API call. It constitutes the replacement for a real Method.invoke() Reflection API call

defined in a PrivilegedClassLoader namespace and is part of the GAE API interception

mechanism.

The problem with an arbitrary method invocation conducted from within a more privileged

class is that it can be abused by an attacker to achieve a complete GAE java security escape

as described in 3.1.3.1.

2.2.4 Issue 7

As indicated in 1.2.4.1, GAE intercepts certain java.lang.ClassLoader method

invocations in order to protect against arbitrary privileged class definitions in the JVM. A

given safe Class Loader class either implements or transfers execution of certain security

sensitive Class Loader methods such as defineClass to proper wrapper methods.

Unfortunately, GAE does not take into account the possibility to obtain a reference to a

protected Class Loader method with the use of a findSpecial() method call of a new

Reflection API. As a result, a valid method handle to security sensitive defineClass

method could be obtained and called. This condition can be exploited to achieve a complete

GAE security sandbox escape (arbitrary class definition in a privileged protection domain

with no Class Sweeper in place).

2.2.5 Issues 8 and 10

GAE Interception API implementation for getMethod() and getDeclaredMethod() calls

of java.lang.Class class does not return references to certain security sensitive

methods of Class Loader classes such as defineClass, resolveClass and

findLoadedClass. Instead, a reference to a safe replacement method from

com.google.apphosting.runtime.security.shared.SafeClassDefiner class is

provided (safeDefineClass, safeResolveClass and safeFindLoadedClass

respectively). This is illustrated on Fig. 11.

Fig. 11 An illustration of Issue 8.

The Class_ interception class makes use of the internal defineClassOverloads map to

keep track of defineClass methods that are a subject to the abovementioned

replacement. While this map contains information about two most frequent instances of a

defineClass method, it misses information about the following entry:

protected final Class defineClass(String s, ByteBuffer bytebuffer,

ProtectionDomain protectiondomain)

As a result, it is possible to invoke getDeclaredMethod of java.lang.Class class and

obtain a direct reference to a security sensitive defineClass method of

java.lang.ClassLoader class (Issue 8).

Finally, GAE Interception API implementation for getDeclaredMethods() call of

java.lang.Class class neither filters, nor replaces any of the methods in a returned

array. This can be exploited to obtain a direct reference to a security sensitive

defineClass method of java.lang.ClassLoader class (Issue 10).

Due to the limits imposed by GAE Interception API and the invoke method of

java.lang.reflect.Method class in particular, method references obtained with either

Issue 8 or 10 cannot be directly called from within UserClassLoader namespace. They

need to be accompanied by additional vulnerabilities in order to make use of the obtained

defineClass methods.

2.2.6 Issues 9, 11, 15 and 16

GAE Interception API implementation for method handle related operations does not

intercept all of the java.lang.invoke.MethodHandles.Lookup class methods. This in

particular includes methods that allow for a transformation of core Reflection API objects

(instances of java.lang.reflect.Method / java.lang.reflect.Field class) into

method handles.

The implementation of the following methods is missing from the

com.google.apphosting.runtime.security.shared.intercept.java.lang.in

voke.MethodHandles.Lookup_ class:

 unreflect (Issue 9)

 unreflectSpecial (Issue 11)

 unreflectGetter (Issue 15)

 unreflectSetter (Issue 16)

GAE follows JRE approach to method handles security. It assumes that a method handle

obtained with the use of any of the intercepted MethodHandles.Lookup class methods

(i.e. findVirtual, findStatic) is already safe for use. Thus, no security checks are

implemented during method handle invocations. In JRE, proper security checks are also

conducted at the time of a given method handle creation, but not at the time of its

invocation. Thus, a valid method handle reference is always invocable in GAE.

Due to the incomplete interception of the methods of

java.lang.invoke.MethodHandles.Lookup class, GAE restrictions imposed on

Reflection API objects can be successfully bypassed. These restrictions limit the possibility to

invoke methods and access fields that are not public and are part of a GAE / JRE code (not

defined by user application code or any user Class Loaders created by it). This also includes

fields and methods with an overriden access19.

By turning method and field references into method handles, one can successfully escape

GAE security sandbox. As a result, security sensitive methods such as defineClass

method of java.lang.ClassLoader class obtained with either Issue 8 or 10 can be

invoked. All that is needed for that purpose is a proper transformation of a given method

into a corresponding method handle as illustrated on Fig. 12.

Fig. 12 An illustration of Issue 9.

Similarly, a restricted java.lang.reflect.Field object can be read or set upon turning

it into a method handle. This can be in particular helpful if a security sensitive field (i.e.

unsafe field of java.util.Random) is to be read from a system class.

It should be mentioned that Issue 9 is similar to Issue 64 we reported to IBM in May 2013

[15].

2.2.7 Issue 12 and 14

As described in 1.2.4.1, Class Loader PreVerfier inspects ldc instructions in order to detect

arbitrary loading of a method handles corresponding to either Class Loader's defineClass

or one of its guarded methods. It changes any potentially unsafe method handle into a

corresponding safe replacement.

Similarly, GAE Interception API implementation for method handle lookup operations returns

safe replacements for certain security sensitive method handles such as those corresponding

to the defineClass method of java.lang.ClassLoader class.

19

 Such as those for which setAccessible() method of java.lang.reflect.AccessibleObject
was invoked.

The intercepted findVirtual() method first checks whether a given method lookup

operation is done with respect to a Class Loader object. If this is the case,

lookupSafeDefineClass method is invoked, which tries to find a safe replacement for a

looked up method handle, but only if it corresponds to a defineClass method. This is

illustrated on Fig. 13.

Fig. 13 An illustration of Issue 12.

The search for a safe replacement method handle is done through an internal lookup object

and with the use of a findVirtual() call as well. The lookup is however always done

against com.google.apphosting.runtime.security.shared.SafeClassDefiner

class and for a safeDefineClass method name. Its type descriptor has one extra

argument added to the beginning of an arguments list, so that it meets the requirement for

the intercepted / interjected method.

Unfortunately, SafeClassDefiner class does not implement20 all security relevant

methods corresponding to the defineClass of java.lang.ClassLoader class. This in

particular considers the following methods:

public static Class safeDefineClass(ClassLoader,String,ByteBuffer,ProtectionDomain)

public static Class safeDefineClass(ClassLoader,byte[],int,int)

The two missing safeDefineClass methods lie at the core of Issues 12 and 14. If a

search for a safe replacement method handle cannot find it in the SafeClassDefiner

class, the method handle lookup operation does the search against the original class. As a

result, actual defineClass method handle is returned by to the caller. This method handle

can be further invoked without any restrictions as explained in 2.2.6. In case of Issue 12,

this can immediately lead to the complete escape of a GAE security sandbox (defineClass

invocation with an arbitrary, user provided ProtectionDomain argument).

20

 no implementation of a given method replacement by SafeDefineClass implicates no interception of
the original method.

2.2.8 Issue 13

The ability to define custom Class Loader objects in GAE implicates the ability to call

protected methods of java.lang.ClassLoader class. For that reason, Class Loader

PreVerifier changes the code of user defined Class Loader's so that certain security sensitive

method invocations are always dispatched from a given safe Class Loader superclass.

Class Loader PreVerifier does not however take into account a findSystemClass method

of java.lang.ClassLoader class. As a result, arbitrary system classes can be loaded by

user code, including classes not present on JRE Class Whitelist.

2.2.9 Issues 17 an 18

The implementation of a GAE Interception mechanism for Reflection API calls allow for

arbitrary access to members of system classes denoted as prohibited by a Java security

policy21 (Issue 17). This both violates and weakens a Java security sandbox.

The following methods of java.lang.Class class were found to be affected:

 getField

 getFields

 getDeclaredField

 getDeclaredFields

 getMethod

 getMethods

 getDeclaredMethod

 getDeclaredMethods

 getConstructor

 getConstructors

 getDeclaredConstructor

 getDeclaredConstructors

Similarly, the implementation of a GAE Interception mechanism for Reflection API calls allow

for arbitrary access to declared members of system classes (Issue 18). This also violates and

weakens a Java security sandbox.

The following methods of java.lang.Class class were found to be affected:

 getDeclaredField

 getDeclaredFields

 getDeclaredMethod

 getDeclaredMethods

 getDeclaredConstructor

 getDeclaredConstructors

Regardless of the fact that there are multiple, separate method calls affected by each of the

issues, and due to the fact that original JRE calls corresponding to the affected methods

21

 in GAE, package.access=sun.,\ etc.

contain proper security checks (missing in a code of the intercepted methods), we decided

to treat Issues 17 and 18 as single ones instead of assigning a separate issue to each of the

affected calls. The reason for it was the use of a security check in a form of an

isInspectable method call of

com.google.apphosting.runtime.security.shared.RuntimeVerifier class in

each of the affected methods. We came to the conclusion that this was likely an

implementation of this method that lacked proper checkMemberAccess and

checkPackageAccess calls, not the implementation of the affected Reflection API

methods.

2.2.10 Issue 19

GAE Interception API implementation for a getProtectionDomain() method of

java.lang.Class class always returns an instance of a ProtectionDomain object for a

given class argument. This is due to the invocation of a getProtectionDomain() call

itself done from within a doPrivileged method block as illustrated on Fig. 14.

Fig. 14 An illustration of Issue 19.

This is also in contrary to a JRE implementation of the getProtectionDomain() call. The

latter always checks for a proper permission prior to giving access to the security sensitive

ProtectionDomain object as it can both leak information about security boundaries of a

given code (its permissions, classpath JAR files and their locations), but also facilitate certain

privilege elevation attacks22.

2.2.11 Issue 20

Issue 19 revealed information about file permissions granted to user application classes:

class MyFirstJAppServlet

ProtectionDomain

(file:/base/data/home/apps/s~myfirstjapp/1.379850528770929561/WEB-INF/classes/ <no

signer certificates>)

 com.google.apphosting.runtime.security.UserClassLoader@877c09

 <no principals>

 java.security.Permissions@b06677 (

22

 those attacks that rely on a modification of the permissions field of a ProtectionDomain object
associated with a user class.

 ("java.lang.RuntimePermission" "createClassLoader")

 ("java.lang.RuntimePermission" "accessDeclaredMembers")

 ...

("java.io.FilePermission" "/base/java7_runtime/prebundled/user-unprivileged.jar"

"read")

 ("java.io.FilePermission" "/base/jre7/lib/rt.jar" "read")

 ("java.io.FilePermission" "/base/java7_runtime/runtime-shared.jar" "read")

 ("java.io.FilePermission" "/base/java7_runtime/prebundled-connector-j/jdbc-mysql-

connector.jar" "read")

 ...

)

It turned out that user applications can obtain runtime classes used in a GAE environment

as well as some code implementing a GAE sandbox itself. This information leak makes it

possible for an attacker to both verify the patching status of the JRE as well as help identify

some security vulnerabilities in a GAE code such as Issue 24.

2.2.12 Issue 21

Exploitation of Issue 20 revealed an additional vulnerability. It turned out that a JRE runtime

class base used in a GAE environment is 1+ years old.

In Sep 2013, Oracle changed the implementation of new Reflection API (JDK 7 Update 40).

The contents of java.lang.invoke package from /base/jre7/lib/rt.jar file

indicates that the JRE used in GAE is prior to that time (no LambdaForm class, missing

security checks in MethodHandles.Lookup class implementation, etc.).

The above means that the environment was potentially vulnerable to 100+ unpatched

security vulnerabilities [16]. This also means that Issue 69 published in Oct 2013 [17]

should also work in a GAE environment upon some modification23.

2.2.13 Issues 22, 23, 25, 26 and 27

Any vulnerability that allows for an arbitrary escape of a GAE Class Loader restrictions

makes it possible to gain access to the classes from a RuntimeClassLoader namespace.

This is in particular relevant as in GAE, a reference to a given Class Loader instance can be

obtained by the means of a getClassLoader() method. This method needs to be

invoked in an escape Class Loader namespace and on a ProtectionDomain object

associated with a class defined by a loader of which reference is to be obtained. Thus, a

reference to the RuntimeClassLoader instance can be obtained through any of the

visible runtime-shared.jar classes. It can be further used to load arbitrary GAE

runtime classes, including those not visible to the UserClassLoader namespace.

Access to the RuntimeClassLoader classes allows to exploit security vulnerabilities

present in their code. These classes are defined in a more privileged Protection Domain than

user applications classes (Fig. 6). Thus, any security issue affecting the

RuntimeClassLoader namespace creates a potential for a privilege elevation attack.

23

 we verified that this was actually the case in Mar 2015.

The org.mozilla.javascript.tools.shell.JavaPolicySecurity class is a good

example for that. This class embeds an insecure implementation of an internal Class Loader

instance that makes use of a user provided Protection Domain argument in its

defineClass method (Issue 22). This is illustrated on Fig. 15.

Fig. 15 An illustration of Issue 22.

Additionally, there are several classes that implement certain Reflection API calls in an

unsafe way. This in particular includes arbitrary invocation of the invoke method of

java.lang.reflect.Method class. Such an invocation is used by the following

RuntimeClassLoader classes:

 com.google.common.reflect.Invokable$MethodInvokable (Issue 23)

 org.apache.commons.beanutils.MethodUtils (Issues 25 and 26)

 org.codehaus.jackson.map.introspect.AnnotatedMethod (Issue 27)

2.2.14 Issue 24

Issue 24 is a vulnerability which can be exploited to both gain access to a

RuntimeClassLoader namespace and to implement a complete GAE security sandbox

escape. It stems from an insecure use of invoke method of java.lang.reflect.Mehod

class in com.google.apphosting.util.UserClassLoaderHelper class.

The interesting thing about UserClassLoaderHelper class is that it is defined by a

bootstrap Class Loader and is not available to user code by default. The vulnerable code can

be however reached through a javax.el.BeanELResolver class, which belongs to a

user visible past of a RuntimeClassLoader namespace. This is illustrated on Fig. 16.

Fig. 16 An illustration of Issue 24.

The code of BeanELResolver class calls invokeUsingMirror method of a

UserClassLoaderHelper class. This invocation is however limited to Beans' setter and

getter methods only. What this means is that the called methods need to either:

 have a name starting with a get string and be a no-argument methods,

 have a name starting with a set string and be a one argument methods.

Additionally, the invokeUsingMirror method will directly invoke a target method only if

current Thread's context Class Loader value is NULL. In any other case, it will be proxied

through the intercepted Reflection API class (will be a subject to GAE restrictions).

The above prerequisites are not a big obstacle though. The vulnerable invoke method of

com.google.apphosting.util.UserClassLoaderHelper class can be successfully

exploited in two steps. Both steps need to be conducted from within a finalizer of an

arbitrary object. The reason for it is the requirement for a NULL value of current Thread's

context Class Loader. In JRE, this value is always NULL when a system finalizer thread

processes (invokes) arbitrary finalizers (finalize() methods).

In step 1, BeanELResolver class can be used to invoke a getter method for a classLoader

property of BeanELResolver class itself. As a result, getClassLoader() method of

java.lang.Class will be invoked for BeanELResolver class. The result of this call will

be the value of a RuntimeClassLoader.

In step 2, access to RuntimeClassLoader namespace can be used for a direct invocation of

invokeUsingMirror method of

com.google.apphosting.util.UserClassLoaderHelper class. As a result, an

arbitrary method invocation could be achieved from within a privileged Class Loader

namespace. This condition can be further exploited to achieve a complete GAE security

sandbox escape with the use of a technique presented in paragraph 3.1.3.2.

2.2.15 Issues 28 and 29

As described in 1.2.4.2, GAE changes the code of finalize() methods in order to protect

against arbitrary execution of user provided finalizers.

The above restriction can be bypassed with the use of a whitelisted

java.io.zip.ZipFile system class that can be exploited to invoke a user provided code

as part of its finalize() method implementation (Issue 28). In a ZipFile case, its

close() method is called inside a finalizer. Thus, all that is needed to call arbitrary user

provided code inside a system finalizer is to extend a ZipFile class and provide arbitrary

implementation for its close() method. This is illustrated on Fig. 17.

Fig. 17 An illustration of Issue 28.

Paragraph 1.1.4 also indicates that Java SE API methods implementing implicit Garbage

Collection (GC) calls are intercepted in a way that makes it difficult for user code to control

the GC process. This can be bypassed with the use of a system java.nio.Bits class

(Issue 29). The code containing arbitrary invocation of a System.gc() call can be

triggered with the use of the following code sequence:

 ByteBuffer.allocateDirect(0x10000000);

The allocateDirect method of java.nio.ByteBuffer class allocates an instance of a

DirectByteBuffer class. Its constructor invokes reserveMemory method of

java.nio.Bits class for that purpose:

 static void reserveMemory(long size, int cap) {

 ...

 if (cap <= maxMemory - totalCapacity) {

 reservedMemory += size;

 totalCapacity += cap;

 count++;

 return;

 }

 System.gc();

 ...

 }

The requests to allocate memory chunks larger than a specific memory limit go through a

code path that invokes a System.gc() call.

2.2.16 Issue 30

The allocateInstance method of

com.google.apphosting.api.ReflectionUtils class allows to allocate instances of

arbitrary classes. It is implemented with the use of an allocateInstance method of

sun.misc.Unsafe class, which takes one argument only denoting a class of an object to

allocate.

The checks conducted prior to the unsafe object allocation operation primarily verify

whether it is to be conducted for a class loaded by a user Class Loader. These checks are

however insufficient. They allow for a call in a case of a NULL context Class Loader and also

for the classes defined in prohibited packages (i.e. sun.*). This can be exploited to create

valid instances of security sensitive classes such as sun.misc.Unsafe class.

2.2.17 Issue 31

Issue 31 allows to obtain a reference to the defineClass method of

java.lang.ClassLoader class through a Constant Pool of a Java Class file. GAE code

inspects Constant Pool entries denoting certain Method Handles (defineClass methods),

it does not however inspect the EnclosingMethod attributes, which can hold references to

arbitrary instances of java.lang.reflect.Method class.

Issue 31 is a minor modification of a known Issue 63 we reported to IBM in May 2013 [15].

Oracle Java SE had a similar vulnerability, but the company fixed it by adding a security

check to a getEnclosingMethod call (a check against

RuntimePermission("accessDeclaredMembers")).

We initially classified Issue 31 as a manifestation of Issue 21 (old JRE), but due to the fact

that GAE grants access to declared members for user applications, Issue 31 does not

depend on the old JRE code base (it could be abused in GAE even with the most recent JRE

7U71).

2.3 AFFECTED COMPONENTS

Discovered vulnerabilities had their origin in several improperly implemented GAE

components. Fig. 18 shows specific security issues and their location (GAE components they

originated from).

What can be seen from it is that a majority of issues originated from an insecure

implementation of a GAE security layer, Class Sweeper and mirror classes in particular.

These components were alone responsible for 20 vulnerabilities in total.

Fig. 18 Security issues and GAE components they originated from.

2.4 VENDOR'S EVALUATION

Google acknowledged that Security Explorations' report demonstrated that one of company's

layers of defense had insufficient mitigations against certain type of attacks and the auditing

of the privileged Java classes were insufficient.

The company provided a status report containing the results of its evaluation of the reported

issues. Google concluded that the issues that worked24 turned out to have as a root cause a

common bug / class with a couple different exploitation vectors. The results of Google's root

cause tracking / bugs evaluation are presented in Table 3.

Bug class Status Issues

URLClassLoader instantiation ACCEPTED 1, 2, 4

unintercepted MethodHandles.Lookup.in(Class) ACCEPTED 5

unintercepted methods in Lookup mirror ACCEPTED 6, 7, 10, 11, 24

MethodHandles weaken original reflection model ACCEPTED 8, 9, 12, 14, 15, 16, 22,

23, 25, 26, 27

findSystemClass() needs to be overwritten to

check classes against whitelist

ACCEPTED 13

Reflection API doesn't disallow access to

packages/members

WAI 17, 18

Class.getProtectionDomain() leak WAI 19

runtime JAR files aren't protected against reading WAI 20

outdated JRE ACCEPTED 21

Insufficient checks in
RuntimeVerifier.getApplicationCallerClass

ACCEPTED 3

UNKNOWN ACCEPTED 28

UNKNOWN UNKNOWN 29, 30, 31
Table 3 The results of Google's root cause tracking / bugs evaluation.

24

 this primarily concerns the issues reported after 12-Dec-2014 (after our access to the GAE environment was
reenabled and all of the issues could be confirmed in a production).

This table indicates that Google treated some of the issues as not bugs, but working as

intended (WAI) issues. They are described in a more detail below.

Issues with a bug class or status denoted as UNKNOWN didn't have a corresponding

information provided by the company.

2.4.1 WAI issues

Google evaluated Issues 17-20 as working as intended issues. The following arguments

were used by the company to support its conclusion:

 For Issues 17 and 18 the company stated that it had a whitelist of classes, so it

didn't consider this to be a security issue on its own. Overall, Google would consider

that fixing these issues wouldn't provide a clear security barrier.

 For Issue 19, Google stated that if an attack requires instantiation of

URLClassLoader or bypassing defineClass() interception and cannot be

performed without these prerequisites then the above issues are considered to be

the root causes. There is no expectation that the sandbox can function once the

application has got hold of a real URLClassLoader.

 For Issue 20, the company agrees that this information can be used by an attacker

to learn more about the JRE, however it would prefer not to depend on keeping this

secret.

2.4.1.1 Additional arguments

In a response to the above, we provided additional arguments to Google regarding Issues

17-20. These are outlined below.

Issue 17

Oracle Java SE API documentation available at

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html specifies

that getMethod() call of java.lang.Class class throws a SecurityException if a

security manager, SM , is present and any of the following conditions is met:

1) invocation of sm.checkMemberAccess(this, Member.PUBLIC) denies access

to the method,

2) the caller's class loader is not the same as or an ancestor of the class loader for the

current class and invocation of sm.checkPackageAccess() denies access to the

package of this class.

In a GAE environment, there is a security manager set. Condition 1 is not met, but condition

2 is fulfilled, but no SecurityException is thrown. Such an implementation violates

Oracle's Java SE API.

Additionally, successful exploitation of Reflection API issues usually requires the following:

 access to an instance of a prohibited Class object (i.e. sun.misc.Unsafe),

 access to specific Method, Field or Constructor object of a prohibited class (i.e.

defineClass method of sun.misc.Unsafe class).

By allowing reflection access to methods of classes denoted as prohibited by a Java security

policy (in GAE, package.access=sun.,\ etc.), the job is made easier for an attacker

(one step less in an exploitation process).

Finally, if a deeper look into the code of a standard JRE getMethod() call (and the

remaining Reflection API methods indicated by us) is made, the following implementation

can be seen:

 public transient Method getMethod(String s, Class aclass[])

 throws NoSuchMethodException, SecurityException {

 checkMemberAccess(0, Reflection.getCallerClass(), true);

 ...

There is a checkMemberAccess() call in the beginning of every Reflection API based

method. And checkMemberAccess() invokes checkPackageAccess() among other

things:

 private void checkMemberAccess(int i, Class class1, boolean flag) {

 SecurityManager sm = System.getSecurityManager();

 if (sm ! = null) {

 ...

 checkPackageAccess(classloader, flag);

 }

 }

GAE's Java API interception model lacks both of the above invocations. As a result, we

conclude that it weakens the security model of a standard JRE25.

Issue 18

Rationale for treating Issue 18 as a security bug is similar to Issue 17. Again, Oracle's Java

SE API is violated (access to declared members is allowed, in a standard JRE security

sandbox such an access is not allowed across class loader namespace boundaries).

Similarly to Issue 18, a standard JRE security model is also weakened and exploitation

process made easier (i.e. certain declared static fields of whitelisted classes contain

references to prohibited classes, security sensitive objects or methods).

In our POC codes, access to declared members is exploited in order to:

 obtain access to sun.misc.Unsafe Class instance (type of a declared field of

java.util.Random class),

 obtain access to protected defineClass method of java.lang.ClassLoader

class.

25

 Java Applets and Java Web Start applications, but also standalone Java applications with a Security Manager
set.

If the above was not possible, whole exploit chains would be blocked as indicated in

paragraph 3.2.

Finally, there is no rationale for giving unrestricted reflective access to all classes. Users can

easily implement (expose) access to private fields of its own classes (from

UserClassLoader namespace) by the means of standard Java language features. Users

can also make use of Java SE 7 features (i.e. MethodHandles) for that purpose.

Issue 19

This issue is an information leak. Security vulnerabilities of that type are usually helpful

during the exploitation process. This is also the case here.

Unrestricted getProtectionDomain() call turned out to be useful when we initially

approached GAE. It provided hints on which areas of Java security to focus on in order to

break it.

A successful call to getProtectionDomain() also helped us gain access to:

 Permissions object assigned with user application classes (exploit Scenario 1

described in 3.1.1)

 an instance of a RuntimeClassLoader object, which further opened access to

runtime-impl.jar class namespace and associated vulnerabilities (Issues 23-27).

So, again we have a situation, where an innocent looking call turns out to be very helpful in

a couple of exploitation scenarios. It also weakens a standard JRE security model (this call is

not allowed in JRE due to rather sensitive nature of the object references it contains).

It's also worth to mention that the output of a getProtectionDomain() call encountered

in Oracle Java Cloud environment did not leak that much information:

ProtectionDomain (

file:/customer/applications/Greeting/app/_WL_internal/servers/m0/tmp/_WL_us

er/Greeting/qb06jh/war/WEB-INF/lib/_wl_cls_gen.jar

 <no signer certificates>)

 weblogic.utils.classloaders.ChangeAwareClassLoader@16bfb595

 finder: weblogic.utils.classloaders.CodeGenClassFinder@16bfd510

 annotation: Greeting@Greeting.war

 <no principals>

 java.security.Permissions@16f0f133 (

)

)

Issue 20

This information leak issue was also helpful during the exploitation phase. We could in

particular learn that java.lang.ClassLoader had some extra native calls added by

Google to its implementation:

 private static native long getLauncherHandle0();

 private static native long findWithHandle0(long l, String s);

 private static native void unloadLauncher0(long l);

The first two turned out to be in particular useful to retrieve addresses of libc /

libjavaruntime symbols (for native code execution, inspection of certain memory

structures, etc.).

We could also learn that GAE had 1+ years old JRE (Issue 21), which was helpful during

privilege elevation phase (exploit vectors described in paragraph 3.1.2.1 and 3.1.2.2).

Class Loaders can be implemented in a way that does not expose anything from the

classpath (system JAR content in particular), except from user provided classes / resources.

2.4.1.2 Closing thoughts

As a response to the above, Google stated that it generally agreed that certain WAI Issues

were deviations from a traditional Java security model. The company however indicated that

it was necessary (dealing with web applications vs. java applets).

We did not agree with Google's evaluation methodology of reported issues. It is a common

trend in attacks against technologies such as Java VM that more than one, partial and

sometimes even innocent looking security issue needs to be combined together to achieve a

serious security compromise. By focusing on the so called root cause, Google could easily

miss an innocent vulnerability that may turn out to be helpful in a future attack. The

company could also miss the opportunity to make a platform more secure by blocking

certain issues that were part of real exploit chains.

Issue 5 is a good example of the risks associated with Google's evaluation methodology.

This issue was originally reported as an instance of an "insecure use of invoke method of

java.lang.reflect.Method class". Google concluded that a root cause for this

vulnerability was the "unintercepted MethodHandles.Lookup.in(Class) call". As a

result, an initial fix for Issue 5 deployed in GAE seemed to address the in method only. This

is illustrated on Fig. 19.

Fig. 19 Output of POC4 illustrating Issue 5 after an initial fix deployment.

That's equivalent to addressing an exploitation vector described in a paragraph 3.1.3.1

(abuse of an outer class implementation). As the fix didn't address the actual cause of Issue

5, upon some minor modification of POC4, a complete GAE security sandbox escape could

be still achieved (new POC21 illustrating Issue 5).

3 EXPLOITATION TECHNIQUES

This paragraph provides information regarding exploitation of security issues described in a

previous paragraph. Information about specific exploitation vectors and exploit chains

making use of several vulnerabilities are presented.

3.1 SPECIFIC EXPLOITATION VECTORS

In most cases, exploitation of the discovered vulnerabilities is straightforward. This in

particular includes Issues 7 an 12, which are related to the acquiring and invocation of a

defineClass method handle of java.lang.ClassLoader class. These issues can be

exploited by defining a privileged class in an escape Class Loader namespace (the

namespace, which is not a subject to the class sweeping)

There are some vulnerabilities requiring a specific exploitation vector, such as those that

allow for arbitrary URLClassLoader instantiation (Issues 1, 2, 4 and 6) or Reflection API

method invocation conducted from within a privileged CL namespace (Issues 5, 23-27).

Below, a more detailed description is provided with respect to them.

3.1.1 Generic privilege elevation scenarios

Several of our POC codes implement similar privilege elevation scenarios for a complete GAE

security sandbox escape. These scenarios rely on several generic primitives that functionally

correspond to specific Java SE API methods, of which some need to be invoked in a

privileged context. These primitives and their corresponding API calls are presented in Table

4.

Primitive Corresponding, functionally equivalent Java SE API

GET_DECLARED_FIELD getDeclaredField method of java.lang.Class class invoked

in a privileged context

SET_ACCESSIBLE setAccessible method of

java.lang.reflect.AccessibleObject class invoked in a

privileged context

GET_FIELD_VALUE get method of java.lang.reflect.Field class

SET_FIELD_VALUE set method of java.lang.reflect.Field class

GET_METHOD getMethod method of java.lang.Class class invoked in a

privileged context

INVOKE_METHOD invoke method of java.lang.reflect.Method class

Table 4 Generic primitives and corresponding Java SE API methods used in privilege elevation scenarios.

Our exploitation Scenario 1 expressed with the use of the described generic primitives

proceeds as following:

1) GET_DECLARED_FIELD primitive is used to obtain a private permissions Field

object of java.security.ProtectionDomain class,

2) SET_ACCESSIBLE primitive is used to override a security of the permissions Field

obtained in step 1,

3) Protection Domain object associated with user defined classes is obtained with the

use of Issue 19,

4) an instance of a java.security.Permissions object is created with an

AllPermission permission added to it (all permissions set),

5) SET_FIELD_VALUE is used to assign the permissions field of a Protection Domain

object obtained in step 3 with a value of a permissions set created in step 4.

What's interesting in the presented exploitation Scenario 1 is that it does not turn security

manager off. It is however completely sufficient to issue arbitrary method calls in a fully

privileged scope. All that is required for it, is the invocation of a given method in a

doPrivileged method block (enabling of the permissions associated with a user's class

Protection Domain).

Our exploitation Scenario 2 expressed with the use of the generic primitives proceeds as

following:

1) GET_DECLARED_FIELD primitive is used to obtain a private, static unsafe Field of

java.util.Random class,

2) SET_ACCESSIBLE primitive is used to override a security of the unsafe Field

obtained in step 1,

3) GET_FIELD_VALUE primitive is used to read the value of the unsafe Field (an

instance of sun.misc.Unsafe class),

4) GET_METHOD primitive is used to obtain access to a defineClass Method of

sun.misc.Unsafe class (the class of object obtained in step 3),

5) INVOKE_METHOD primitive is used to call defineClass Method of

sun.misc.Unsafe class and define a privileged HelperClass class in a system

Class Loader namespace,

6) HelperClass class is instantiated and a Security Manager is turned off.

Exploitation Scenario 2 makes use of more primitives and it does set the value of a Security

Manager to NULL. It also relies on Issue 19 to obtain a reference to a Protection Domain

object associated with user classes.

Both exploitation scenarios assume the presence of an escape Class Loader namespace. It is

required in Scenario 1 for a successful invocation of a given method in a doPrivileged

method block. Scenario 2 requires it for the execution of GET_FIELD_VALUE,

SET_FIELD_VALUE and INVOKE_METHOD primitives. They are invoked on members of

system classes - reflective access to such classes is prevented by a GAE Interception layer

as indicated in paragraph 1.2.4.3.

3.1.2 URLClassLoader instance

While, the ability to create a fully functional URLClassLoader instance can be used for an

escape of a UserClassLoader namespace and all restrictions imposed on it (i.e. JRE Class

Whitelist and Class Sweeper), it is not privileged enough to define user classes with arbitrary

permissions. Thus, another exploitation vector is required to achieve a complete JRE

sandbox escape.

This URLClassLoader instance is however able to load classes from restricted packages

such as sun.*. That's due to the loadClass() method missing a proper security check26.

When combined with Issue 17, arbitrary instances of these classes could be created and

their methods called.

Below, descriptions of two URLClassLoader exploitation scenarios is provided that were

used by us during the research of GAE security. Both of them involve conducting operations

in two Class Loader namespaces. UserClassLoader namespace is used by default. All

system method / method handle calls along with Issue 17 exploitation are conducted in it.

URLClassLoader namespace is used to delegate invocation of Reflection API calls

conducted on members from a non-user Class Loader namespace. As a result, GAE

restrictions imposed on them could be bypassed.

3.1.2.1 sun.swing.AccessibleMethod (Oct 2012 exploit vector)

Our original POC code from Oct 2012 implementing a complete GAE security sandbox

escape relied on Issue 1. It also made use of a sun.swing.AccessibeMethod class,

which constituted an unpublished JRE exploit vector at that time. This exploit vector was in

particular useful as the constructor of AccessibeMethod class contained setAccessible

method invocation of java.lang.reflect.AcesibleObject class conducted in a

doPrivileged method block. This is illustrated on Fig. 20.

Fig. 20 The implementation of sun.swing.AccessibleMethod class.

This exploit vector could be used to override Java security protection for a given method

denoted by a user. It could be any method, including private ones, of any system class.

26

 It's hard to blame Oracle for this as in JRE, pure instances of the URLClassLoader class are not used.

Instead, objects of java.net.FactoryURLClassLoader class are used.

We exploited this condition to implement arbitrary privilege elevation of UserClassLoader

classes with the use of exploitation Scenario 1. GET_DECLARED_FIELD primitive used by it

was implemented with the use of Issue 18. SET_ACCESSIBLE primitive directly corresponded

to the functionality of sun.swing.AccessibeMethod class.

3.1.2.2 sun.swing.SwingLazyValue (Oct 2014 exploit vector)

In our most recent POC codes we make use of sun.swing.SwingLazyValue class, which

constitutes an old and less known JRE exploit vector (Issue 21). An instance of this class can

be used as a proxy class calling methods of other classes through an insecure invoke()

Reflection API call. This is illustrated on Fig. 21.

Fig. 21 The implementation of sun.swing.SwingLazyValue class.

Arbitrary method invocation conducted from within a system class can be abused by an

attacker to implement access to its private members with the use of a new Reflection API.

This exploitation technique is in particular valid for sun.swing.SwingLazyValue class as

illustrated on Fig. 22.

Fig. 22 The SwingLazyValue exploit vector.

In the new Reflection API, all reflective accesses to methods, constructors and fields are

done with respect to the special lookup object, which is the instance of

MethodHandles.Lookup class. This lookup object denotes the class with respect to which

all method handle lookup operations are conducted. By default, this is the caller class of

MethodHandles.Lookup() that is used as a lookup class.

An instance of MethodHandles.Lookup class created through the invoke() call

embedded in a code of a sun.swing.SwingLazyValue class will have its lookup object

set to the SwingLazyValue class itself. As a result, access to its private

makeAccessible method could be gained. This method implements a privileged

operation that overrides a security protection for a given java.lang.AccessibleObject

class instance (i.e. Field or Method).

In our POC codes, a shared exploitation scenario is used for all URLClassLoader issues. It

is implemented by a EVector class and implements exploitation Scenario 2. Again,

GET_DECLARED_FIELD primitive used by it was implemented with the help of Issue 18.

SET_ACCESSIBLE primitive directly corresponded to the functionality of the

makeAccessible method of sun.swing.AccessibeMethod class. Issue 17 was used

to implement the functionality of a GET_METHOD primitive. Finally, GET_FIELD_VALUE and

INVOKE_METHOD primitives were implemented by corresponding Java SE APIs, but called in

the URLClassLoader namespace.

3.1.3 invoke() in a privileged CL namespace

GAE code contained several instances of a classic Reflection API vulnerabilities originating

from an insecure use of the invoke method of java.lang.reflect.Method class.

Below, two exploitation scenarios are presented with respect to them that are in particular

interesting.

3.1.3.1 Abuse of an outer class implementation (Issue 5)

Arbitrary method invocation conducted from within a more privileged class can be abused by

an attacker to implement access to its private members with the use of a new Reflection

API. This exploitation technique is in particular valid for Issue 5 as illustrated on Fig. 23.

Fig. 23 The exploitation of Issue 5.

In our case, the invoke method is called from within a doPrivileged method block, thus

arbitrary invocation of MethodHandles.Lookup() call would set

com.google.apphosting.runtime.security.shared.intercept.java.lang.re

flect.Method_$1 class as a lookup object. Due to the fact that internal classes can

access private members of the outer classes that enclose them, the lookup object can be

changed to the outer class with the use of a Lookup.in() method call. This new lookup

object can be abused to obtain method handles to either setAccessiblePrivileged()

or privilegedInvoke() methods. The first method overrides a security protection for

given java.lang.AccessibleObject class instance (i.e. Field or Method). The second

one, allows for arbitrary method invocation inside a doPrivileged method block. The two

method can be used in parallel to achieve a complete Java security sandbox escape with the

use of exploitation Scenario 2. GET_DECLARED_FIELD, GET_FIELD_VALUE, GET_METHOD

and INVOKE_METHOD primitives were implemented with the use of the abovementioned

privilegedInvoke method. SET_ACCESSIBLE primitive directly corresponded to the

functionality of the setAccessiblePrivileged method of Method_ class.

3.1.3.2 MethodHandleProxies implementing PriviledgedAction interface (Issues 23-27)

Our Oracle Security Vulnerability report from Mar 2013 [18] described arbitrary JVM

exploitation technique making use of the asInterfaceInstance method of

MethodHandleProxies class. It relied on the possibility to create a

MethodHandleProxy instance implementing a java.security.PrivilegedAction

interface that executed a specially crafted method handle at the time of an interface method

dispatch (method run() in this case). This specially crafted method handle was

corresponding to setSecurityManager method of java.lang.System class with an

argument bound to the NULL value. The idea behind the exploit was to provide a

MethodHandleProxy instance as an argument to the doPrivilegedWithCombiner

method call of java.security.AccessController class. As a result, a target method

handle could be successfully executed with full privileges (in a privileged method block as all

stack frames surrounding it were from privileged Class Loader namespaces).

Similar privilege elevation technique could be used in GAE for a successful exploitation of an

arbitrary invoke() call done from within a privileged Class Loader namespace such as

those corresponding to Issues 23-27. Below, a more detailed scenario is described with

respect to them.

It should be noted, that presented exploitation scenario assumes an arbitrary escape of a

UserClassLoader namespace. This is primarily due to the need to execute arbitrary user

code in a finalizer thread (unrestricted finalize() methods).

Issues 23, 25, 26 and 27

These issues have their origin in classes defined in a RuntimeClassLoader namespace.

Although this namespace is not fully privileged, it contains several privileges beyond those

possessed by a UserClassLoader that can directly lead to a complete Java security

sandbox escape. This in particular includes "suppressAccessChecks" and

"accessClassInPackage.sun.*" runtime permissions.

In order to be able to create a MethodHandleProxy instance implementing a

java.security.PrivilegedAction interface that could be used in the attack, the

following two conditions need to be satisfied (Fig. 24):

1) a target method handle needs to be bound to a privileged27 class,

2) a MethodHandleProxy instance needs to be created in a privileged Class Loader

namespace.

27

 to a class, which privileges are to be exploited.

Fig. 24 MethodHandleProxy creation for java.security.PrivilegedAction interface.

For Issues 23-27, condition 1 is always satisfied as the caller of the

asInterfaceInstance method of MethodHandleProxies class is a class from a

RuntimeClassLoader namespace (caller of the insecure invoke method). Condition 2

can be met if either current Thread's getContextClassLoader() result yields a

privileged Class Loader or a NULL value. In GAE, current Thread's

getContextClassLoader() points to UserClassLoader by default, thus the only way

to meet condition 2 is when it is set to the NULL value. This can be accomplished by issuing

the asInterfaceInstance method call in a JVM's system finalizer thread (in any object's

finalize() method). In such a case, a system Class Loader namespace will be used to

define a MethodHandleProxy class. Thus, it needs to be privileged as well. In GAE, an

instance of a system Class Loader has the following permissions (1.2.6):

sun.misc.Launcher$AppClassLoader@8d1800

 <no principals>

 java.security.Permissions@16782fa (

 ("java.lang.RuntimePermission" "exitVM")

 ("java.security.AllPermission" "<all permissions>" "<all actions>")

 ("java.io.FilePermission" "/base/java7_runtime/runtime-main.jar" "read")

)

The above indicates that its class loader namespace is fully privileged, which completes all

conditions for the creation of a MethodHandleProxy instance implementing a

java.security.PrivilegedAction interface.

In our POC codes, a helper method (run_privileged method of InvokeHelper class)

implementing arbitrary method invocation with a privileges of a Class Loader namespace

embedding it is constructed as following (Fig. 25):

Fig. 25 An implementation of arbitrary method invocation with the privileges of a Class Loader namespace embedding a
vulnerable invoke() call.

 the lookup method of MethodHandles class is invoked with the use of a given

vulnerable invoke() call (Issue 23, 25, 26 or 27), as a result a privileged

(ALL_MODES) lookup object is obtained with a base lookup class denoting a class

from a RuntimeClassLoader namespace (the caller of the lookup method

corresponding to the class of the exploited issue),

 a target MethodHandle object (target_mh) is obtained with the use of a

findVirtual method of MethodHandles.Lookup class invoked on the lookup

object acquired above,

 the asInterfaceInstance method of MethodHandleProxies class is invoked

in a system finalizer thread with the use of a vulnerable invoke() call, a

java.security.PrivilegedAction interface along with a target method handle

are provided as method arguments, the call returns an instance of a

MethodHandleProxy class (priv_action) ,

 the doPrivileged method call of java.security.AccessController class is

invoked with the use of a vulnerable invoke() call, the priv_action instance

obtained above is provided as an argument to it, as a result a target MethodHandle

object is invoked in a privileged method block (with the privileges of a Class Loader

namespace embedding a vulnerable invoke() call).

A complete GAE security sandbox escape can be achieved with the use of exploitation

Scenario 2. All primitives required by this scenario could be expressed with the use of a

helper method described above (all security sensitive methods such as

getDeclaredField(), setAccessible(), etc. can be invoked through the

run_privileged method).

Issue 24

Exploitation of Issue 24 can be also accomplished with the use of the technique described

above. The run_privileged helper method can be however used to call any security

sensitive method. The reason for it are the privileges of the vulnerable

com.google.apphosting.util.UserClassLoaderHelper class. It comes from

jdk7_runtime-bootstrap.jar code location, which is part of the fully privileged,

system Class Loader namespace (1.2.6):

sun.boot.class.path=

 /base/java7_runtime/jdk7_runtime-bootstrap.jar:

 /base/jre7/lib/resources.jar:

 /base/jre7/lib/rt.jar:

 /base/jre7/lib/sunrsasign.jar:

 /base/jre7/lib/jsse.jar:

 /base/jre7/lib/jce.jar:

 /base/jre7/lib/charsets.jar:

 /base/jre7/classes

As a result, a constructed MethodHandleProxy will be always an instance of a fully

privileged class and no restrictions will be imposed on doPrivileged method calls

implemented by the run_privileged helper (all stack frames will be privileged). This is

why only one method needs to be called through it in order to implement a complete GAE

sandbox escape exploitation scenario. This is the setSecurityManager of

java.lang.System class as illustrated on Fig. 26.

Fig. 26 JVM call stack during Issue 24 exploitation.

3.2 EXPLOIT CHAINS

Many of the discovered vulnerabilities needed to be chained together in order to create a

successful GAE security sandbox bypass condition. Table 5 presents information about actual

exploit chains used in our POC codes that lead to such a condition.

 Issue #

PoC

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
4

1
7

1
8

1
9

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

1 ● ● ●

2 ● ● ● ●

3 ● ● ●

4 ● ● ●

5 ● ● ●

6 ●

7 ● ● ●

8 ● ● ●

9 ●

17 ● ● ●

18 ● ● ● ● ● ●

19 ● ●

20 ● ● ● ● ● ●

21 ●

22 ● ●

Table 5 Exploit chains used in complete GAE security sandbox bypass POC codes.

It indicates that there are 27 vulnerabilities in total shared across 15 POC codes. Eight of

them are completely independent full GAE escape codes (marked as red rows) making use

of 17 different issues (indicated by yellow dots).

Additionally, Table 6 presents information about exploit chains relying on Issues 17-19

evaluated by Google as WAI Issues. It shows that 10 exploit chains would be broken

(marked as red rows) if these issues (indicated by yellow dots) were not present in GAE.

 Issue #

PoC

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
4

1
7

1
8

1
9

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

1 ● ● ●

2 ● ● ● ●

3 ● ● ●

4 ● ● ●

5 ● ● ●

6 ●

7 ● ● ●

8 ● ● ●

9 ●

17 ● ● ●

18 ● ● ● ● ● ●

19 ● ●

20 ● ● ● ● ● ●

21 ●

22 ● ●

Table 6 Exploit chains relying on Issues 17-19.

A summary of the main exploit chains implemented by Proof of Concept codes

accompanying this report is provided below:

 arbitrary URLClassLoader instantiation (via either Issue 1, 2, 4 or 6) is exploited

through a restricted JRE class to which access is gained through Issues 17 and 21

(exploitation Scenario 2)

 acquired defineClass method of java.lang.ClassLoader class (Issue 8, 10 or

31) is turned into a method handle (Issue 9 or 11) in order to be able to call it

(define a privileged class in an escape CL namespace),

 access to RuntimeClassLoader instance (via Issues 14 and 19) is combined with

a Class Loader vulnerability (Issue 24) or a Reflection API bug (either Issue 23, 25,

26 or 27) in order to define a privileged class in an escape CL namespace or

implement exploitation Scenario 2 (via MethodHandleProxies implementing

PriviledgedAction interface),

 invocation of a user provided code in a system finalizer thread (Issues 28 and 29) is

chained with Issue 30 allowing for a restricted JRE class' instantiation, this is further

exploited through Issues 17 and 21 (steps 4-6 of exploitation Scenario 2).

3.3 NATIVE CODE EXECUTION

A complete Java security sandbox escape can be exploited to gain access to both binary and

class files implementing a GAE sandbox at Java VM level. A more detailed inspection of the

environment requires access to the native OS layer though. This in particular includes an

arbitrary memory reading and writing as well as a native code execution.

3.3.1 Breaking type safety

As indicated in our SAT-TV research and SE-2012-01 report, core Reflection API can be

easily abused to break Java type and memory safety [19][13] through a specially crafted

manipulation of a type field value of a reflective Field object.

This deficiency of a Java Reflection API is exploited in our Proof of Concept codes as well. It

forms a base for an implementation of an unsafe cast operation from java.lang.Object

to int. Such an operation allows to convert Java VM references to arbitrary memory

addresses. Itself, it constitutes a successful compromise of a Java type safety rules.

In our Proof of Concept codes, this is the TCHelper (type confusion helper class) class and

its getaddr method that implements the abovementioned Reflection API abuse:

 public static int getaddr(Object o)

3.3.2 Breaking memory safety

While Java memory safety could be broken with the abovementioned Reflection API abuse,

we decided to make use of the functionality of sun.misc.Unsafe class instead.

This class, among others, implements the following two native methods:

 public native int getInt(long l);

 public native void putInt(long l, int i);

They can be used to read and write arbitrary int values from a memory address denoted

by their first argument. When combined with the getaddr method, both methods could be

used to read and write values of Java objects or classes regardless of their security access.

In our Proof of Concept codes, these are the read_mem and write_mem methods of the

API class that form a base for all memory access related operations. They wrap around the

abovementioned methods of sun.misc.Unsafe class.

3.3.3 Gaining code execution

Arbitrary native code execution is achieved by exploiting the fact that GAE JVM is based on a

HotSpot JVM for which optimization and JIT compilation of most frequently used (hotspots)

Java bytecode sequences lie at the core of its functionality.

3.3.3.1 methodOop's adapter handle

Support for JIT means that JVM both allocates and maintains dedicated memory areas

(pools) that contain native code generated at runtime. Some of these areas have read, write

and execute memory permissions set, which makes them a perfect target for an overwrite

with an arbitrary user provided code to execute. This in particular includes the

_c2i_unverified_entry memory area. Its address can be retrieved by navigating the

internal JVM Class representation (instanceKlass structure) and its methods table. This is

illustrated on Fig. 27.

Fig. 27 Discovering the rwx memory area pointed by methodOop's adapter handle.

The MethodOop's structure corresponds to the internal representation of a class' method. It

contains a pointer to an adapter handle encompassing several marshalling adapters

responsible for a setup (i.e. arguments marshalling, frames setup) and invocation of

arbitrary code transfers in JVM. This in particular includes an invocation of an interpreted

call from a compiled code, which is handled by the _c2i_unverified_entry adapter.

In our Proof of Concept codes, the memory area pointed by the

_c2i_unverified_entry adapter is used as an initial storage for a user provided native

code instructions to execute.

3.3.3.2 NativeSignalHandler

A native handle0 method of sun.misc.NativeSignalHandler class is abused to

achieve an arbitrary code execution dispatch from a given memory address. It takes two

arguments denoting a signal number and a corresponding code handler:

 private static native void handle0(int signum, long handle);

The implementation of the handle0 method looks as following:

 Java_sun_misc_NativeSignalHandler_handle0 proc near

 push ebp

 mov ebp, esp

 sub esp, 18h

 mov dword ptr [esp+8], 0

 mov dword ptr [esp+4], 0

 mov eax, [ebp+10h]

 mov [esp], eax

 call [ebp+14h]

 leave

 retn

 Java_sun_misc_NativeSignalHandler_handle0 endp

Since this is a native method, its arguments need to follow the Java Native Interface

Specification [20]. This implicates the meaning of the arguments upon native

Java_sun_misc_NativeSignalHandler_handle0 function entry as illustrated in Table 7.

Argument Meaning

[ebp+08h] JNIEnv ptr

[ebp+0ch] this ptr

[ebp+10h] arg0 (signum)

[ebp+14h] arg1 (code handler)
Table 7 Arguments' meaning of a native Java_sun_misc_NativeSignalHandler_handle0 function.

The meaning of the arguments indicates that the invocation of the handle0 method with a

handle argument denoting a given memory address will start executing code from it. Such

an execution will be done with a signum value passed as a first argument (on top of the

stack).

3.3.3.3 Generic code_handle

In order to be able to invoke arbitrary library calls through the NativeSignalHandler

class, our POC codes make use of a generic handle_code, which wraps arbitrary native

code invocations:

 push ebp

 mov ebp,esp

 push ebx ;save regs

 push ecx

 push edx

 push esi

 push edi

 sub esp,028h ;alloc tmp space for args

 cld

 mov esi,[ebp+0x08] ;ptr to args area (signum)

 mov eax,[esi] ;target code addr to invoke

 add esi,0x04 ;addr of first arg

 mov edi,esp ;copy args to stack

 mov ecx,08h

 rep movsd

 call eax ;call target function

 mov esi,[ebp+0x08] ;ptr to args area (signum)

 mov [esi],eax ;store a function result

 add esp,028h ;restore stack ptr

 pop edi ;restore regs

 pop esi

 pop edx

 pop ecx

 pop ebx

 pop ebp

 retn

The handle_code treats the first argument provided (signum) as a pointer denoting the

memory area holding the values of a target code address to invoke (offset 0x00) and its

arguments (offset 0x04). Upon setting up a local stack frame and filling it with the

arguments passed, a target code gets invoked through an indirect call instruction. Upon

completion of a called function, its returned value is stored back into the memory location

denoted by a signum argument.

3.3.3.4 Native code execution setup

In our Proof of Concept codes, the code pointed by the _c2i_unverified_entry

adapter is overwritten with a handle_code sequence that invokes an mprotect libc call.

As a result, the permissions for a given memory region (rwx_chunk) provided as an

argument to the call are changed, so that arbitrary code could be executed from it.

The _c2i_unverified_entry is overwritten only for the time of a mprotect invocation.

Its content is restored, once the mprotect completes its job and rwx_chunk is ready for

use. The value of the rwx_chunk itself is obtained through the malloc primitive described

in the next paragraph.

Fig. 28 The native code execution setup.

Upon changing the permissions of rwx_chunk to PROT_READ|PROT_WRITE|PROT_EXEC,

generic code sequences implementing arbitrary library (handle_code) and system call

(syscall_code) invocations are copied to it.

From that moment, these invocation wrappers can be used through the native handle0

method of sun.misc.NativeSignalHandler class. All that's needed for that purpose is

a proper setup of the signum argument. For a library call, it needs to point to the area

holding a library address and its arguments. For a system call, it needs to hold a syscall

number and corresponding arguments.

The described native code execution setup is illustrated in Fig. 28.

It is worth to mention that the described native code execution functionality is fully reliable.

It is also capable to bypass certain exploit mitigation techniques such as Address Space

Layout Randomization (ASLR) and (Data Execution Prevention) DEP that are supported by

the underlying operating system.

3.3.4 Native API

For the purpose of an easier native layer access, the API class was developed that

implements several methods for an arbitrary memory access and native code execution in

particular. These methods are briefly described below.

3.3.4.1 Arbitrary memory access

As indicated in 3.3.2, the base primitives for arbitrary memory read and write operations are

implemented with the use of getInt and putInt methods of sun.misc.Unsafe class.

They are exposed as the following API methods:

 int read_mem(int addr)

 void write_mem(int addr,int val)

3.3.4.2 Native code execution

The API class implements two methods that allow for arbitrary native code execution:

 int call(int addr, int a0, int a1, int a2, int a3, int a4, int

a5, int a6, int a7)

 int syscall(int num, int a0, int a1, int a2, int a3, int a4)

The call method invokes a function at a given memory location and with a list of

arguments provided. The syscall method is similar - it invokes a system call denoted by a

given number and arguments.

3.3.4.3 Symbol address lookup

As indicated in 2.4.1.1, Google added getLauncherHandle0 and findWithHandle0

native methods to the implementation of java.lang.ClassLoader class. These methods

allow to find native addresses of the symbols exported by the Java VM runtime binary in

particular. They are functionally similar to dlopen and dlsym Unix dynamic linker

functions.

The handle returned by the invocation of the first method always corresponds to the main

program. This is due to the NULL library name argument that this function passes to the

underlying native load method of ClassLoader.NativeLibrary class.

The API class wraps the abovementioned native ClassLoader methods into a single

method:

 int get_addr(final String name)

3.3.4.4 Malloc and free primitives

The API class implements two methods that allow for arbitrary allocation and freeing of

memory chunks:

 int malloc(final int size)

 void free(final int addr)

They are implemented with the use of allocateMemory and freeMemory methods of

sun.misc.Unsafe class.

3.3.4.5 Sample uses

The API class makes it possible to call native code from Java as if it was yet another Java

method. A code sequence implementing arbitrary invocation of a getpid() libc function

call is presented below:

 int getpid=API.get_addr("getpid");

 out.println("getpid: "+Integer.toHexString(getpid));

 int res=API.call(getpid,0,0,0,0,0,0,0,0);

 out.println("getpid res: "+Integer.toHexString(res));

It produces the following output:

getpid: f49876b0

getpid res: 1476

Additionally, the API class contains several additional helper methods that among other

things allow to read C strings or blocks of data from a given memory location. A code

sequence implementing arbitrary read of the contents of the program's argc and argv

variables is provided below:

 int addr=API.get_addr("__google_auxv");

 int argc=API.read_mem(addr-0x0c);

 int argv=API.read_mem(addr-0x08);

 int envp=API.read_mem(addr-0x04);

 out.println("argc: "+Integer.toHexString(argc));

 out.println("argv: "+Integer.toHexString(argv));

 for(int i=0;i<argc;i++) {

 addr=API.read_mem(argv+i*4);

 String s=API.read_string(addr);

 out.println("argv["+i+"] = "+s);

 }

The following output is produced by it:

argc: 34

argv: ff82db14

argv[0] = /base/java7_runtime/java_runtime_launcher-piii-linuxopt

argv[1] = --appengine_release_name=1.9.16

argv[2] = --java_soft_deadline_ms=10600

argv[3] = --java_hard_deadline_ms=10200

argv[4] = *INTENTIONALLY REMOVED*

argv[5] = --external_datacenter_name=us2

argv[6] = --jvm_flags=-Xms32m

argv[7] = --enable_gae_cloud_sql_jdbc_connectivity

argv[8] = --interrupt_threads_first_on_soft_deadline

argv[9] = *INTENTIONALLY REMOVED*

argv[10] = *INTENTIONALLY REMOVED*

argv[11] = --application_root=/base/data/home/apps

argv[12] = --port=-1

argv[13] = --api_call_deadline=5.000000

argv[14] = --max_api_call_deadline=10.000000

...

The API class turned out to be in particular useful during the reverse engineering of a Java

VM runtime binary (libjavaruntime.so) and its runtime behavior.

4 VULNERABILITIES IMPACT

Successful exploitation of the vulnerabilities could allow to bypass GAE whitelisting of JRE

classes and achieve a complete Java VM security sandbox escape. As a result, access to the

files (binary / classes) comprising the JRE sandbox could be gained. By breaking Java

memory safety, arbitrary native code execution could be also achieved in a target GAE

environment (ability to issue arbitrary library / system calls).

While, we haven't reached a point in our research where we could state that arbitrary

compromise of other GAE user's data or applications is possible (bypass of the first

sandboxing layer of App Engine, with the remaining layers intact), the achieved security

compromise did constitute a considerable information leak. It could be used to gain a lot of

information about the JRE sandbox itself, Google internal services and protocols. It also

seemed to be a potentially good starting point to proceed with attacks against the OS

sandbox and RPC services visible to the sandboxed Java environment.

Below, more details are provided with respect to the information leak itself. The following

information could be gained upon a successful compromise of a GAE security sandbox:

 binary and Java codes implementing the GAE JVM runtime, that include the monster

libjavaruntime.so binary (468416808 bytes) and runtime-impl.jar archive

of Java classes (121611977 bytes) in particular,

 full DWARF debug information included in binary files (type information and such),

 PROTOBUF [21] definitions from Java classes (description of 57 services in 542

.proto files),

 PROTOBUF definition from binary files (description of 8 services in 68 .proto files),

 many URLs denoting Google source code repositories and corporate web addresses

left in code,

 static configuration data for Google services (355 services in total).

PROTOBUF definitions mentioned above needed to be extracted from binary / class files. We

used a small tool (ExtractProto) for that purpose that generated proper ASCII representation

of the available protocols definitions. The contents of APPENDIX B was obtained with the use

of this tool.

It should be also mentioned, that PROTOBUF definitions did constitute a significant

information leak in particular. They included information about internal Google services of

which many appeared rather unrelated to Google App Engine (i.e. Android, PartnerServices,

GAIA auth / security stuff). The PROTOBUF definitions carried information about protocols,

their dependencies and services' definitions in a form of specific request / response

messages.

Finally, binary codes implementing GAE runtime were not properly built. Apart from

significant debugging information left in it, many client side code was accompanied by a

code that seemed to be a part of a server end. This in particular includes the OS Sandbox

related components. Similarly, GAE runtime classes included huge amounts of code

implementing Google's sensitive functionality and protocols related to security and

authentication, monitoring, file systems and ads in particular. In general, this all looked as if

all core internal Google APIs and libraries were incorporated into the GAE runtime. That's

likely because Google GAE integrates tightly with a core, RPC service based middleware

layer on top of which all other, internal Google services run (all Google runs ?).

5 SUMMARY

Securing cloud based environments that allow for arbitrary deployment and execution of

user provided code is a challenging task. Current solutions are usually built upon a specific

sandboxing mechanism, either custom built or implemented with the use of a virtualization.

In case of Google App Engine for Java, its first layer of defense was built around a Java VM

sandbox. Google decided to implement an additional security layer (sandbox) on top of it. As

a result, several custom security measures were integrated into a Java VM runtime. This in

particular concerns the Class Sweeper, of which goal was to verify and transform untrusted

user code into a corresponding, safer representation. The API Interception and Interjection

mechanism was meant to enforce proper security checks in runtime for security sensitive

Java SE API calls. Finally, the JRE Class Whitelisting was supposed to limit the scope of Java

classes visible to user applications.

Unfortunately, the custom security layer implemented by Google turned out to be vulnerable

to multiple security weaknesses. Some of them were instances of known vulnerabilities

published in the past. This in particular concerns the issues disclosed as part of SE-2012-01

research affecting Java SE implementation from Oracle and IBM (Issues 4, 9 and 31). This

also concerns several security vulnerabilities that made it possible to break Oracle Java

Cloud Service (Issues 1 and 4). The ability to break GAE with the use of a prior research

indicates that it was either ignored or simply never taken into account.

The majority of the flaws discovered in GAE were related to either Reflection API or Class

Loaders. These were rather simple issues, which should have been caught during a security

review process preceding a release of GAE software (or any major update to it).

Reflection API and Class Loaders are fairly complex and security sensitive components of a

Java VM. A lot of expert knowledge and a deep understanding of their operation is usually

required prior to introducing any changes to them without jeopardizing the security of a

JVM. Regardless of that, Google decided to "reimplement" Java Reflection API, through the

GAE interception layer. This was the same API that caused so much trouble for Oracle in the

recent years and that was responsible for dozens of security issues in Java. The company

also allowed for a creation of arbitrary user provided Class Loaders in GAE, which

immediately created a need to protect the environment from these objects.

As a result, a security model of a standard JRE was weakened (Issue 17-19). Arbitrary

vulnerabilities were introduced on top of the implementation of JRE API calls (Issues 3 and

5), which GAE Java API interception model aimed to protect. These vulnerabilities

constituted the same violations of Java Secure Coding Guidelines [22] of which Oracle has

been usually accused of. Many vulnerabilities had its origin in an incomplete interception of

Java SE 7 method handles API (Issues 7, 9, 11, 15, 16), Class Loader's operation (Issue 13)

or mitigations aimed at making user Class Loaders less privileged than usual (Issues 8, 10,

12, 14).

During our correspondence with Google, the company often emphasized that we only broke

the first layer of defense and that it considered the remaining, lower sandboxing layers

sufficiently robust. This could explain why the environment of a cloud computing platform

from Google ran on a 1+ year old Java runtime (Issue 21). However, the amount and nature

of information leaked by the first sandboxing layer along with the company's preference not

to have the details of the next sandboxing layers published seemed to contradict the

confidence expressed regarding their robustness.

It should be also mentioned that regardless of a successful detection of our activity in GAE,

Google's ability to detect attacks in the environment was not perfect. Our activity raised an

alarm 2 years after an initial GAE security sandbox compromise. It was likely detected

because we decided to launch more aggressive (more visible / risky) tests and did not follow

our usual, low-profile pattern of activity.

Google is a specific software vendor that serves hundreds of millions of users on a daily

basis through its custom services. In most cases, the architecture and implementation

details of these services are not known due to their server-side nature. As a result, the

ability to discover security issues in these services could be quite challenging. Without any

doubt security of Google services is not less important than discovering vulnerabilities in a

client / server side software of other big software vendors. That thought alone should catch

attention of Google itself. At the end of a day, it might turn out that it would be of a more

benefit to the company and users of its services to have Google security personnel to be

more focused on its own products instead of the products of the competition [23]. The case

of Google App Engine for Java shows that this might actually make sense and that there are

still places for improvement in Google's own yard.

REFERENCES

[1] SE-2012-01 Security vulnerabilities in Java SE

http://www.security-explorations.com/en/SE-2012-01.html

[2] Google App Engine: Platform as a Service

https://cloud.google.com/appengine/docs

[3] [SE-2014-02] Google App Engine Java security sandbox bypasses (project pending

completion / action from Google)

http://seclists.org/fulldisclosure/2014/Dec/26

[4] Google Security Research

http://code.google.com/p/google-security-research/

[5] Mac Flashback trojan exploits unpatched Java vulnerability, no password needed

http://arstechnica.com/apple/2012/04/mac-trojan-exploits-unpatched-

java-vulnerability-no-password-needed/

[6] Disable Java NOW, users told, as 0-day exploit hits web

http://www.theregister.co.uk/2012/08/27/disable_java_to_block_exploi

t/

[7] Java Runtime Environment

https://cloud.google.com/appengine/docs/java/

[8] URL Fetch Java API Overview

https://cloud.google.com/appengine/docs/java/urlfetch/

[9] ASM - Java bytecode manipulation and analysis framework

http://asm.ow2.org/

[10] The Java Virtual Machine Specification, Java SE 7 Edition

http://docs.oracle.com/javase/specs/jvms/se7/html/

[11] Java and Java VM security vulnerabilities and their exploitation techniques, Last Stage

of Delirium Research Group

http://lsd-pl.net/

[12] SE-2013-01-ORACLE, Issues #1-28

http://www.security-explorations.com/materials/SE-2013-01-ORACLE.pdf

[13] Security Vulnerabilities in Java SE, technical report

http://www.security-explorations.com/materials/se-2012-01-report.pdf

[14] [SE-2012-01] 'Fix' for Issue 32 exploited by new Java 0-day code

http://seclists.org/fulldisclosure/2013/Jan/66

[15] SE-2012-01-IBM-2, Issue #62-68

http://www.security-explorations.com/materials/SE-2012-01-IBM-2.pdf

[16] Java version history, Wikipedia

http://en.wikipedia.org/wiki/Java_version_history

[17] SE-2012-01-ORACLE-13, Issue #69

http://www.security-explorations.com/materials/SE-2012-01-ORACLE-

13.pdf

[18] SE-2012-01-ORACLE-11, Issue #56-60

http://www.security-explorations.com/materials/SE-2012-01-ORACLE-

11.pdf

[19] Security threats in the world of digital satellite television, Hack in the Box Security

Conference, Amsterdam 2012

http://www.security-explorations.com/materials/se-2011-01-hitb1.pdf

[20] Java Native Interface Specification

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTO

C.html

[21] Protocol Buffers - Google's data interchange format

http://code.google.com/p/protobuf/

[22] Secure Coding Guidelines for Java SE

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

[23] Project Zero, http://googleprojectzero.blogspot.com/

APPENDIX A

SUMMARY OF THE VULNERABILITIES

ISSUE

TECHNICAL DETAILS

1 origin com.google.apphosting.runtime.security.shared.interject.ja

va.lang.Class_ class
com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause getConstructor()/newInstance() methods of java.lang.Class

mirror missing Class Loader instantiation checks

impact arbitrary system Class Loader instantiation (i.e.

java.net.URLClassLoader)

type partial GAE security bypass vulnerability

2 origin Class Sweeper

cause java.security.Provider.Service is a whitelisted / not mirrored class

impact arbitrary system Class Loader instantiation (i.e.

java.net.URLClassLoader)

type partial GAE security bypass vulnerability

3 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause insecure use of forName() method of java.lang.Class class

impact arbitrary access to restricted classes

type partial security bypass vulnerability

4 origin Class Sweeper

cause java.beans.XMLDecoder is a whitelisted / not mirrored class

impact arbitrary system Class Loader instantiation (i.e.

java.net.URLClassLoader)

type partial GAE security bypass vulnerability

5 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.Method_ class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type complete GAE security bypass vulnerability

6 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of findConstructor() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact arbitrary system Class Loader instantiation (i.e.

java.net.URLClassLoader)

type partial GAE security bypass vulnerability

7 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of findSpecial() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact java.lang.ClassLoader's defineClass access through special

MethodHandle

type complete GAE security bypass vulnerability

8 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause missing defineClass(String,ByteBuffer,ProtectionDomain) call in

defineClassOverloads map

impact access to security sensitive defineClass method of

java.lang.ClassLoader class

type partial GAE security bypass vulnerability

9 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of unreflect() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact java.lang.ClassLoader's defineClass access through MethodHandle

type partial GAE security bypass vulnerability

10 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause unfiltered getDeclaredMethods() call of java.lang.Class mirror

impact access to security sensitive defineClass method of

java.lang.ClassLoader class

type partial GAE security bypass vulnerability

11 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of unreflectSpecial() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact java.lang.ClassLoader's defineClass access through MethodHandle

type partial GAE security bypass vulnerability

12 origin com.google.apphosting.runtime.security.shared.SafeClassDef

iner class

cause missing
safeDefineClass(ClassLoader,String,ByteBuffer,ProtectionDo

main) method in SafeClassDefiner implementation

impact access to security sensitive defineClass method handle of

java.lang.ClassLoader class

type complete GAE security bypass vulnerability

13 origin Class Sweeper

cause no handling of findSystemClass() method of java.lang.ClassLoader

class by Class Loader PreVerifier

impact arbitrary loading of system classes (whitelisting escape)

type partial GAE security bypass vulnerability

14 origin com.google.apphosting.runtime.security.shared.SafeClassDef

iner class

cause missing safeDefineClass(ClassLoader,byte[],int,int) method in

SafeClassDefiner implementation

impact access to security sensitive defineClass method handle of

java.lang.ClassLoader class

type partial GAE security bypass vulnerability

15 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of unreflectGetter() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact reflective Field access to GAE / system classes

type partial GAE security bypass vulnerability

16 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.reflect.MethodHandles.Lookup_ class

cause no interception of unreflectSetter() method of

java.lang.reflect.MethodHandles.Lookup mirror

impact reflective Field access to GAE / system classes

type partial GAE security bypass vulnerability

17 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause no checkPackageAccess() call in Reflection API methods

impact Reflection API calls allowed for prohibited classes (sun.* package)

type partial GAE security bypass vulnerability

18 com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class
cause no checkMemberAccess() call in Reflection API methods

impact Reflection API calls allowed for declared members

type partial GAE security bypass vulnerability

19 origin com.google.apphosting.runtime.security.shared.intercept.ja

va.lang.Class_ class

cause getProtectionDomain() invocation inside doPrivileged method block

impact access to the security sensitive ProtectionDomain object

type information leak

20 origin GAE permissions

cause read access allowed for selected JAR files

impact reading a code of runtime classes / GAE sandbox itself

type information leak

21 origin GAE deployment

cause 1+ year old JRE class base (prior to Sep 2013 / JDK7 Update 40)

impact unpatched vulnerabilities / exploit vectors

type partial GAE security bypass vulnerability

22 origin org.mozilla.javascript.tools.shell.JavaPolicySecurity$Load

er class

cause insecure use of defineClass method of java.lang.ClassLoader class

impact arbitrary class loader instantiation (from non-user CL namespace)

type partial GAE security bypass vulnerability

23 origin com.google.common.reflect.Invokable$MethodInvokable class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial GAE security bypass vulnerability

24 origin com.google.apphosting.util.UserClassLoaderHelper class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial GAE security bypass vulnerability

25 origin org.apache.commons.beanutils.MethodUtils class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial GAE security bypass vulnerability

26 origin org.apache.commons.beanutils.MethodUtils class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial GAE security bypass vulnerability

27 origin org.codehaus.jackson.map.introspect.AnnotatedMethod class

cause insecure use of invoke() method of java.lang.reflect.Method class

impact arbitrary invocation of methods with user provided arguments

type partial GAE security bypass vulnerability

28 origin Class Sweeper

cause java.io.zip.ZipFile is a whitelisted / not mirrored class

impact execution of user provided code in finalizer()

type partial GAE security bypass vulnerability

29 origin Class Sweeper

cause java.nio.ByteBuffer is a whitelisted / not mirrored class

impact invocation of prohibited System.gc() call

type partial GAE security bypass vulnerability

30 origin com.google.apphosting.api.ReflectionUtils class

cause insecure use of allocateInstance method of sun.misc.Unsafe class

impact arbitrary instantiation of prohibited classes (sun.* package)

type partial GAE security bypass vulnerability

31 origin Class Sweeper

cause no inspection of the EnclosingMethod attributes of a Java Class' Constant Pool
entries

impact access to security sensitive defineClass method of

java.lang.ClassLoader class

type partial GAE security bypass vulnerability

APPENDIX B

URLFETCH RPC SERVICE (PROTOBUF)

name: "apphosting/api/urlfetch_service.proto"

package: "apphosting"

message_type {

 name: "URLFetchServiceError"

 enum_type {

 name: "ErrorCode"

 value {

 name: "OK"

 number: 0

 }

 value {

 name: "INVALID_URL"

 number: 1

 }

 value {

 name: "FETCH_ERROR"

 number: 2

 }

 value {

 name: "UNSPECIFIED_ERROR"

 number: 3

 }

 value {

 name: "RESPONSE_TOO_LARGE"

 number: 4

 }

 value {

 name: "DEADLINE_EXCEEDED"

 number: 5

 }

 value {

 name: "SSL_CERTIFICATE_ERROR"

 number: 6

 }

 value {

 name: "DNS_ERROR"

 number: 7

 }

 value {

 name: "CLOSED"

 number: 8

 }

 value {

 name: "INTERNAL_TRANSIENT_ERROR"

 number: 9

 }

 value {

 name: "TOO_MANY_REDIRECTS"

 number: 10

 }

 value {

 name: "MALFORMED_REPLY"

 number: 11

 }

 value {

 name: "CONNECTION_ERROR"

 number: 12

 }

 }

}

message_type {

 name: "URLFetchRequest"

 field {

 name: "Method"

 number: 1

 label: LABEL_REQUIRED

 type: TYPE_ENUM

 type_name: ".apphosting.URLFetchRequest.RequestMethod"

 }

 field {

 name: "Url"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "header"

 number: 3

 label: LABEL_REPEATED

 type: TYPE_GROUP

 type_name: ".apphosting.URLFetchRequest.Header"

 }

 field {

 name: "Payload"

 number: 6

 label: LABEL_OPTIONAL

 type: TYPE_BYTES

 options {

 ctype: CORD

 }

 }

 field {

 name: "FollowRedirects"

 number: 7

 label: LABEL_OPTIONAL

 type: TYPE_BOOL

 default_value: "true"

 }

 field {

 name: "Deadline"

 number: 8

 label: LABEL_OPTIONAL

 type: TYPE_DOUBLE

 }

 field {

 name: "MustValidateServerCertificate"

 number: 9

 label: LABEL_OPTIONAL

 type: TYPE_BOOL

 default_value: "true"

 }

 nested_type {

 name: "Header"

 field {

 name: "Key"

 number: 4

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "Value"

 number: 5

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 }

 enum_type {

 name: "RequestMethod"

 value {

 name: "GET"

 number: 1

 }

 value {

 name: "POST"

 number: 2

 }

 value {

 name: "HEAD"

 number: 3

 }

 value {

 name: "PUT"

 number: 4

 }

 value {

 name: "DELETE"

 number: 5

 }

 value {

 name: "PATCH"

 number: 6

 }

 }

}

message_type {

 name: "URLFetchResponse"

 field {

 name: "Content"

 number: 1

 label: LABEL_OPTIONAL

 type: TYPE_BYTES

 }

 field {

 name: "StatusCode"

 number: 2

 label: LABEL_REQUIRED

 type: TYPE_INT32

 }

 field {

 name: "header"

 number: 3

 label: LABEL_REPEATED

 type: TYPE_GROUP

 type_name: ".apphosting.URLFetchResponse.Header"

 }

 field {

 name: "ContentWasTruncated"

 number: 6

 label: LABEL_OPTIONAL

 type: TYPE_BOOL

 default_value: "false"

 }

 field {

 name: "ExternalBytesSent"

 number: 7

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 }

 field {

 name: "ExternalBytesReceived"

 number: 8

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 }

 field {

 name: "FinalUrl"

 number: 9

 label: LABEL_OPTIONAL

 type: TYPE_STRING

 }

 field {

 name: "ApiCpuMilliseconds"

 number: 10

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 default_value: "0"

 }

 field {

 name: "ApiBytesSent"

 number: 11

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 default_value: "0"

 }

 field {

 name: "ApiBytesReceived"

 number: 12

 label: LABEL_OPTIONAL

 type: TYPE_INT64

 default_value: "0"

 }

 nested_type {

 name: "Header"

 field {

 name: "Key"

 number: 4

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 field {

 name: "Value"

 number: 5

 label: LABEL_REQUIRED

 type: TYPE_STRING

 }

 }

}

service {

 name: "URLFetchService"

 method {

 name: "Fetch"

 input_type: ".apphosting.URLFetchRequest"

 output_type: ".apphosting.URLFetchResponse"

 options {

 }

 }

}

options {

 java_package: "com.google.appengine.api.urlfetch"

 cc_api_version: 2

 py_api_version: 1

 java_api_version: 2

 java_outer_classname: "URLFetchServicePb"

 java_generic_services: true

}

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

